Skip to main content
Log in

Feasibility of conversion electron spectrometry using a Peltier-cooled silicon drift detector

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A Peltier-cooled silicon drift detector was successfully applied for conversion electron spectrometry. The energy resolution of the detector for 45 keV electrons was 0.50 keV (FWHM). The approximate thickness of the dead layer was determined to be 140 ± 20 nm Si equivalent. The relative efficiency of the detector was verified to be approximately constant in the energy range of 17–75 keV. This is concordant with the high transparency of the thin dead layer and the sufficient thickness of the detector (450 μm) to stop the electrons. The detector is suitable for use in plutonium analysis of chemically prepared samples. Moreover, it was demonstrated that conversion electron spectrometry is better than alpha spectrometry in preserving its capability to determine the 240Pu/239Pu isotopic ratio as a function of sample thickness. The investigated measurement technique can be considered a promising new tool in safeguards, complementary to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. León Vintró L, Mitchell PI, Condren OM, Moran M, Vives i Batlle J, Sánchez-Cabeza JA (1996) Determination of the 240Pu/239Pu atom ratio in low activity environmental samples by alpha spectrometry and spectral deconvolution. Nucl Instrum Methods Phys Res A 369:597–602

    Article  Google Scholar 

  2. Pöllänen R, Siiskonen T, Ihantola S, Toivonen H, Pelikan A, Inn K, La Rosa J, Bene BJ (2012) Determination of 239Pu/240Pu isotopic ratio by high-resolution alpha-particle spectrometry using the ADAM program. Appl Radiat Isot 70:733–739

    Article  Google Scholar 

  3. Ihantola S, Pelikan A, Pöllänen R, Toivonen H (2011) Advanced alpha spectrum analysis based on the fitting and covariance analysis of dependent variables. Nucl Instrum Methods Phys Res A 656:55–60

    Article  CAS  Google Scholar 

  4. Shiokawa Y, Suzuki K, Suzuki S, Yagi M (1990) Determination of isotopic ratios of plutonium and curium by internal conversion electron spectrometry. J Radioanal Nucl Chem 143(1):135–141

    Article  CAS  Google Scholar 

  5. Trzaska WH (1990) Recommended data on selected gamma-ray and conversion-electron calibration sources. Nucl Instrum Methods Phys Res A 297:223–229

    Article  Google Scholar 

  6. Deslattes RD, Kessler EG Jr, Indelicato P, de Billy L, Lindroth E, Anton J, Coursey JS, Schwab DJ, Chang J, Sukumar R, Olsen K, Dragoset RA (2005) NIST Standard Reference Database 128, X-Ray Transition Energies, http://www.nist.gov/pml/data/xraytrans/index.cfm. Accessed May 2013

  7. Evaluated Nuclear Structure Data File (ENSDF) (2013) http://www.nndc.bnl.gov/ensdf/. Accessed May 2013

  8. Ziegler JF, Biersack JP, Ziegler MD (2008) The stopping and range of ions in matter. http://www.srim.org. Accessed May 2008

  9. Kawrakow I, Mainegra-Hing E, Rogers DWO, Tessier F, Walters BRB (2011) The EGSnrc Code System, NRC, Canada. NRCC Report PIRS-701

  10. DeVol TA, Ringberg AH, Dewberry RA (2002) Isotopic analysis of plutonium using a combination of alpha and internal conversion electron spectrometry. J Radioanal Nucl Chem 254(1):71–79

    Article  CAS  Google Scholar 

  11. Kibédi T, Burrows TW, Trzhaskovskaya MB, Davidson PM, Nestor CW Jr (2008) Evaluation of theoretical conversion coefficients using BrIcc. Nucl Instrum Methods Phys Res A 589:202–229

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Jyväskylä, Finland for lending the required 133Ba source, VTT Technical Research Centre of Finland for providing the Pu particle sample and the reference material and Kaisa Vaaramaa (STUK) for producing the thin Pu sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Peräjärvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peräjärvi, K., Turunen, J., Ihantola, S. et al. Feasibility of conversion electron spectrometry using a Peltier-cooled silicon drift detector. J Radioanal Nucl Chem 299, 229–234 (2014). https://doi.org/10.1007/s10967-013-2788-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2788-0

Keywords

Navigation