Skip to main content
Log in

Investigation of the local delivery of an intelligent chitosan-based 188Re thermosensitive in situ-forming hydrogel in an orthotopic hepatoma-bearing rat model

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, in vitro and in vivo evaluations of the local delivery of 188Re-Tin colloid and doxorubicin (Dox) through chitosan (C)-based thermosensitive in situ-forming hydrogels by intratumoral injection in an orthotopic hepatoma-bearing rat model were carried out. Selective internal radiation therapy has been increasingly used as an alternative therapy option for hepatocellular carcinoma (HCC) and combined with biodegradable drug carrier systems to improve drug delivery and systemic toxicity. The C-based thermosensitive hydrogel (C/GP), an injectable thermogelling solution crosslinked between C and β-glycerophosphate (GP), was induced as an implanted carrier to combine the 188Re-Tin colloid and Dox as a novel treatment strategy. The compounded hydrogel characteristics, including the gelation time, controlled release of Dox, and morphology, were examined. In the animal study, the biodistribution, scintigraphy, therapeutic efficacy, and histopathology were also evaluated. The characterization results reveal that C/GP/Dox hydrogels have similar gelation times of 4–4.5 min and pore sizes of as small as 10 μm compared with C/GP hydrogels. The C/GP/Dox/188Re-Tin colloids have the longest release time for Dox at 2–3 days. In the in vivo experiments, both the biodistribution and scintigraphy studies have the highest hydrogel uptakes in the tumor at different time points, as well as localized radioactivities for a certain time. The therapeutic evaluation indicates that C/GP/Dox/188Re-Tin colloids can more significantly inhibit tumors compared with the control group at 2 and 4 weeks post-treatment. These results indicate that this novel treatment system is a promising option for inoperable HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cabrera R, Nelson DR (2010) Review article: the management of hepatocellular carcinoma. Aliment Pharm Ther 31(4):461–476

    Article  CAS  Google Scholar 

  2. Fan JG, Farrell GC, Party A-PW (2009) Prevention of hepatocellular carcinoma in nonviral-related liver diseases. J Gastroen Hepatol 24(5):712–719

    Article  Google Scholar 

  3. Kalva SP, Thabet A, Wicky S (2008) Recent advances in transarterial therapy of primary and secondary liver malignancies. Radiographics 28(1):101–117

    Article  Google Scholar 

  4. Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, Christensen E, Pagliaro L, Colombo M, Rodes J, HCC EPE (2001) Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. J Hepatol 35(3):421–430

    Article  CAS  Google Scholar 

  5. Livraghi T, Meloni F, Di Stasi M, Rolle E, Solbiati L, Tinelli C, Rossi S (2008) Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: is resection still the treatment of choice? Hepatology 47(1):82–89

    Article  Google Scholar 

  6. Szyszko T, Brooks A, Tait P, Rubello D, Al-Nahhas A (2008) Therapy options for treatment of hepatic malignancy. Eur J Nucl Med Mol I 35(10):1824–1826

    Article  Google Scholar 

  7. Lau WY, Leung TWT, Ho SKW, Chan M, Machin D, Lau J, Chan ATC, Yeo W, Mok TSK, Yu SCH, Leung NWY, Johnson PJ (1999) Adjuvant intra-arterial iodine-131-labelled lipiodol for resectable hepatocellular carcinoma: a prospective randomised trial. Lancet 353(9155):797–801

    Article  CAS  Google Scholar 

  8. Bernal P, Raoul JL, Vidmar G, Sereegotov E, Sundram FX, Kumar A, Jeong JM, Pusuwan P, Divgi C, Zanzonico P, Stare J, Buscombe J, Minh CTT, Saw MM, Chen SL, Ogbac R, Padhy AK (2007) Intra-arterial rhenium-188 lipiodol in the treatment of inoperable hepatocellular carcinoma: results of an IAEA-sponsored multination study. Int J Radiat Oncol 69(5):1448–1455

    Article  CAS  Google Scholar 

  9. Salem R, Lewandowski RJ, Atassi B, Gordon SC, Gates VL, Barakat O, Sergie Z, Wong CYO, Thurston KG (2005) Treatment of unresectable hepatocellular carcinoma with use of Y-90 microspheres (TheraSphere): safety, tumor response, and survival. J Vasc Interv Radiol 16(12):1627–1639

    Article  Google Scholar 

  10. Liepe K, Brogsitter C, Leonhard J, Wunderlich G, Hliscs R, Pinkert J, Folprecht G, Kotzerke J (2007) Feasibility of high activity rhenium-188-microsphere in hepatic radioembolization. Jpn J Clin Oncol 37(12):942–950

    Article  Google Scholar 

  11. Vanpouille-Box C, Lacoeuille F, Roux J, Aube C, Garcion E, Lepareur N, Oberti F, Bouchet F, Noiret N, Garin E, Benoit JP, Couturier O, Hindre F (2011) Lipid Nanocapsules loaded with rhenium-188 reduce tumor progression in a rat hepatocellular carcinoma model. Plos One 6(3). doi:10.1371/journal.pone.0016926

  12. Azhdarinia A, Yang DJ, Yu DF, Mendez R, Oh C, Kohanim S, Bryant J, Kim EE (2005) Regional radiochemotherapy using in situ hydrogel. Pharm Res 22(5):776–783

    Article  CAS  Google Scholar 

  13. Azab AK, Kleinstern J, Doviner V, Orkin B, Srebnik M, Nissan A, Rubinstein A (2007) Prevention of tumor recurrence and distant metastasis formation in a breast cancer mouse model by biodegradable implant of I-131-norcholesterol. J Control Release 123(2):116–122

    Article  CAS  Google Scholar 

  14. Huang LK, Chen WM, Lin WY, Gan GY, Hsieh BT (2011) Local delivery of rhenium-188 colloid into hepatic tumor sites in rats using thermo-sensitive chitosan hydrogel: effects of gelling time of chitosan as delivery system. J Radioanal Nucl Ch 290(1):39–44

    Article  CAS  Google Scholar 

  15. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21):2155–2161

    Article  CAS  Google Scholar 

  16. Molinaro G, Leroux JC, Damas J, Adam A (2002) Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 23(13):2717–2722

    Article  CAS  Google Scholar 

  17. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014

    Article  CAS  Google Scholar 

  18. Huang FY, Huang LK, Lin WY, Luo TY, Tsai CS, Hsieh BT (2009) Development of a thermosensitive hydrogel system for local delivery of Re-188 colloid drugs. Appl Radiat Isotopes 67(7–8):1405–1411

    Article  CAS  Google Scholar 

  19. Azab AK, Orkin B, Doviner V, Nissan A, Klein M, Srebnik M, Rubinstein A (2006) Crosslinked chitosan implants as potential degradable devices for brachytherapy: in vitro and in vivo analysis. J Control Release 111(3):281–289

    Article  CAS  Google Scholar 

  20. Ruel-Gariepy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, Leroux JC (2004) A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 57(1):53–63

    Article  CAS  Google Scholar 

  21. Ta HT, Dass CR, Larson I, Choong PFM, Dunstan DE (2009) A chitosan-dipotassium orthophosphate hydrogel for the delivery of Doxorubicin in the treatment of osteosarcoma. Biomaterials 30(21):3605–3613

    Article  CAS  Google Scholar 

  22. Obara K, Ishihara M, Ozeki Y, Ishizuka T, Hayashi T, Nakamura S, Saito Y, Yura H, Matsui T, Hattori H, Takase B, Ishihara M, Kikuchi M, Maehara T (2005) Controlled release of paclitaxel from photocrosslinked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice. J Control Release 110(1):79–89

    Article  CAS  Google Scholar 

  23. Han HD, Song CK, Park YS, Noh KH, Kim JH, Hwang T, Kim TW, Shin BC (2008) A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int J Pharm 350(1–2):27–34

    Article  CAS  Google Scholar 

  24. Hsieh BT, Lin WY, Luo TY, Cheng KY (2007) Production of carrier-free Re-188 in the past ten years in Taiwan. J Radioanal Nucl Ch 274(3):569–573

    Article  CAS  Google Scholar 

  25. Kang GD, Cheon SH, Song SC (2006) Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels. Int J Pharm 319(1–2):29–36

    Article  CAS  Google Scholar 

  26. Dang QF, Yan JQ, Li JJ, Cheng XJ, Liu CS, Chen XG (2011) Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel. Carbohyd Polym 83(1):171–178

    Article  CAS  Google Scholar 

  27. Chang YJ, Chang CH, Yu CY, Chang TJ, Chen LC, Chen MH, Lee TW, Ting G (2010) Therapeutic efficacy and microSPECT/CT imaging of Re-188-DXR-liposome in a C26 murine colon carcinoma solid tumor model. Nucl Med Biol 37(1):95–104

    Article  CAS  Google Scholar 

  28. Bhattarai N, Gunn J, Zhang MQ (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliver Rev 62(1):83–99

    Article  CAS  Google Scholar 

  29. Xu YL, Wen ZS, Xu ZR (2009) Chitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism. Anticancer Res 29(12):5103–5109

    CAS  Google Scholar 

  30. Park JK, Chung MJ, Choi HN, Park YI (2011) Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int J Mol Sci 12(1):266–277

    Article  CAS  Google Scholar 

  31. Wang SJ, Lin WY, Chen MN, Chi CS, Chen JT, Ho WL, Hsieh BT, Shen LH, Tsai ZT, Ting G, Mirzadeh S, Knapp FF (1998) Intratumoral injection of rhenium-188 microspheres into an animal model of hepatoma. J Nucl Med 39(10):1752–1757

    CAS  Google Scholar 

  32. Ruel-Gariepy E, Leclair G, Hildgen P, Gupta A, Leroux JC (2002) Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release 82(2–3):373–383

    Article  CAS  Google Scholar 

  33. Huang FYJ, Lee TW, Kao CHK, Chang CH, Zhang XN, Lee WY, Chen WJ, Wang SC, Lo JM (2011) Imaging, autoradiography, and biodistribution of Re-188-labeled PEGylated Nanoliposome in orthotopic glioma bearing rat model. Cancer Biother Radio 26(6):717–725

    Article  CAS  Google Scholar 

  34. Peng CL, Shih YH, Liang KS, Chiang PF, Yeh CH, Tang IC, Yao CJ, Lee SY, Luo TY, Shieh MJ (2013) Development of in situ forming thermosensitive hydrogel for radiotherapy combined with chemotherapy in a mouse model of hepatocellular carcinoma. Mol Pharm 10(5):1854–1864

    Article  CAS  Google Scholar 

  35. Wang LN, Su WJ, Liu Z, Zhou MQ, Chen S, Chen YA, Lu D, Liu YH, Fan Y, Zheng YZ, Han ZC, Kong DL, Wu JC, Xiang R, Li ZJ (2012) CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials 33(20):5107–5114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Science Council of Taiwan under No. NSC 98-2314-B-166-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bor-Tsung Hsieh.

Additional information

Feng-Yun J. Huang and Guo-Yi Gan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, FY.J., Gan, GY., Lin, WY. et al. Investigation of the local delivery of an intelligent chitosan-based 188Re thermosensitive in situ-forming hydrogel in an orthotopic hepatoma-bearing rat model. J Radioanal Nucl Chem 299, 31–40 (2014). https://doi.org/10.1007/s10967-013-2742-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2742-1

Keywords

Navigation