Design, testing and optimization of a neutron radiography system based on a Deuterium–Deuterium (D–D) neutron generator

  • K. Bergaoui
  • N. Reguigui
  • C. K. Gary
  • J. T. Cremer
  • J. H. Vainionpaa
  • M. A. Piestrup
Article

Abstract

Simulations show that significant improvement in imaging performance can be achieved through collimator design for thermal and fast neutron radiography with a laboratory neutron generator. The radiography facility used in the measurements and simulations employs a fully high-voltage-shielded, axial D–D neutron generator with a radio frequency driven ion source. The maximum yield of such generators is about 1010 fast neutrons per seconds (E = 2.45 MeV). Both fast and thermal neutron images were acquired with the generator and a Charge Coupled Devices camera. To shorten the imaging time and decrease the noise from gamma radiation, various collimator designs were proposed and simulated using Monte Carlo N-Particle Transport Code (MCNPX 2.7.0). Design considerations included the choice of material, thickness, position and aperture for the collimator. The simulation results and optimal configurations are presented.

Keywords

Thermal neutron radiography Fast neutron radiography D–D Neutron generator Monte Carlo simulation (MCNPX) Collimator CCD camera 

References

  1. 1.
    Fischer CO, Stade J, Bock W (1997) In: Proceedings of fifth world conference on neutron radiography. June 17–20, 1996. Berlin, GermanyGoogle Scholar
  2. 2.
    Fantidis JG, Nicolaou GE, Tsagas NF (2010) A transport neutron radiography system. J Radioanal Nucl Chem 284:479–484CrossRefGoogle Scholar
  3. 3.
    Mishra KK (2005) Development of a thermal neutron imaging facility at the N.C. State University PULSTAR reactor. Ph.D. thesis. Faculty of North Carolina State University. USA, pp 108Google Scholar
  4. 4.
    Elbio C, Burkhard S, Florian G (2005) Construction and assembly of the neutron radiography and tomography facility ANTARES at FRM II. Nucl Instrum Method Phys Res A 542:38–44CrossRefGoogle Scholar
  5. 5.
    Husin W, Thiagu S, Azali M, Abdul AM, Faridah MI (2009) Determination optimal aperture parameters for neutron collimator design using MCNP code. J Nucl Related Technol 6(2):49–62. http://www.nuklearmalaysia.org Google Scholar
  6. 6.
    Pelowitz DB (ed) (2011) MCNPX user’s manual, version 2.7.0. Los Alamos National Laboratory Report LA-CP-11-00438, April 2011Google Scholar
  7. 7.
    http://www.adelphitech.com. Accessed January 2009
  8. 8.
    Reijonen J (2005) Compact neutron generators for medical home land security and planetary exploration. In Proceedings of the 2005 IEEE particle accelerator conference (PAC 05). 16–20 May 2005, Knoxville, Tennessee. 21st IEEE Particle accelerator conference, p. 49Google Scholar
  9. 9.
    Popov V, Degtiarenko P, Musatov I (2010) New detector for use in fast neutron radiography, 12th International workshop on radiation imaging defectors, July 11–15 2010, Robinson College, Cambridge, UK, Published by IOP Published for SISSAGoogle Scholar
  10. 10.
    Patil BJ, Chavan ST, Pethe SN, Krishnan R (2011) Collimator design for 15 MeV linear accelerator based thermal neutron radiography facility. Proceedings of particle accelerator conference, New York, NY, USA, from March 28 to April 1, 2011Google Scholar
  11. 11.
    Domanus JC (1987) Collimators for thermal neutron radiography: an overview. D. Reidel Publishing Company. http://www.worldcat.org
  12. 12.
    Hawkesworth MR (1977) Neutron radiography: equipment and methods. At Energy Rev 15(2):169–220Google Scholar
  13. 13.
    Barton JP (1967) Material Evaluation 25:45A–46AGoogle Scholar
  14. 14.
    Mildner DFR, Arif M, Stone CA (1993) Neutron transmission of single crystal sapphire filters. J Appl Cryst 26:438–447CrossRefGoogle Scholar
  15. 15.
    Adib M, Kilany M (2003) On the use of Bismuth as a neutron filter. Radiat Phys Chem 66:81–88CrossRefGoogle Scholar
  16. 16.
    Fantidis JG, Nicolaou GE, Tsagas NF (2010) Optimization study of a transportable neutron radiography unit based on a compact neutron generator. Nucl Instrum Method Phys Res A 618:331–335CrossRefGoogle Scholar
  17. 17.
    Cremer JT, Williams DL, Gary CK, Piestrup MA, Faber DR, Fuller MJ, Vainionpaa JH, Apodaca M, Pantell RH, Feinstein J (2012) Large area imaging of hydrogenous materials using fast neutrons from a DD fusion. Nucl Instrum Method Phys Res A 675:51–55CrossRefGoogle Scholar
  18. 18.
    Fantidis JG (2012) A study of a transportable thermal neutron radiography unit based on a compact RFI linac. J Radioanal Nucl Chem 293:95–101CrossRefGoogle Scholar
  19. 19.
    Zawisky M, Hameed F, Dyrnjaja E, Springer J (2008) Digitized neutron imaging with high spatial resolution at a low power research reactor: I. Analysis of detector performance. Nucl Instrum Method Phys Res A 587:342–349CrossRefGoogle Scholar
  20. 20.
    Chankow N, Punnachaiya S, Wonglee S (2010) Neutron radiography using neutron imagingplate. Appl Radiat Isot 68:662CrossRefGoogle Scholar
  21. 21.
    Fantidis JG, Nicolaou GE, Tsagas NF (2009) A transportable neutron radiography system based on a SbBe neutron source. Nucl Instrum Method Phy Res A 606:806–810CrossRefGoogle Scholar
  22. 22.
    Jafari H, Feghhi SAH (2012) Design and simulation of neutron radiography system based on 241Am–Be source. Radiat Phys Chem 81:506–511CrossRefGoogle Scholar
  23. 23.
    Bucherl T, Kutlar E, Von Gostomski C L, Calzada E, Pfister G, Koch D (2004) Radiography and tomography using fission neutrons at FRM-II. Appl Radiat Isot 61:537Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • K. Bergaoui
    • 1
  • N. Reguigui
    • 1
  • C. K. Gary
    • 2
  • J. T. Cremer
    • 2
  • J. H. Vainionpaa
    • 2
  • M. A. Piestrup
    • 2
  1. 1.Unité de Recherche “Maîtrise et Développement des Techniques Nucléaires à Caractère Pacifique”National Center of Nuclear Sciences and TechnologiesTunisTunisia
  2. 2.Adelphi Technology Inc.Redwood CityUSA

Personalised recommendations