Skip to main content

Relating β+ radionuclides’ properties by order theory

Abstract

We studied 27 β+ radionuclides taking into account some of their variants encoding information of their production, such as integral yield, threshold energy and energy of projectiles used to generate them; these radionuclides are of current use in clinical diagnostic imaging by positron emission tomography (PET). The study was conducted based on physical, physico-chemical, nuclear, dosimetric and quantum properties, which characterise the β+ radionuclides selected, with the aim of finding meaningful relationships among them. In order to accomplish this objective the mathematical methodology known as formal concept analysis was employed. We obtained a set of logical assertions (rules) classified as implications and associations, for the set of β+ radionuclides considered. Some of them show that low mass defect is related to high and medium values of maximum β+ energy, and with even parity and low mean lives; all these parameters are associated to the dose received by a patient subjected to a PET analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. An enriched target allows obtaining a high purity radionuclide; however the process is expensive. Even though, for the production of 18F in a cyclotron facility, one of the most widely used β+ radionuclide in PET; it is necessary to use an expensive enriched target (H 182 O, 18O > 95%).

  2. In our study, the maximum energy of projectiles was divided into three ranges: low (E < 14.7 MeV), medium (E = 14.8–59.0 MeV) and high energies (E = 60–110 MeV) (Table 4).

  3. Although the desired property is zero β decay in diagnostic image, 64Cu has proven to be very suitable for combining PET imaging and targeted therapy [17, 32], as it has three decay modes.

  4. Endpoint energy of a β+ decay is the kinetic energy of all positrons emitted through β+ decay. Since the surplus in energy has to be divided between the positron and the neutrino, there is a continuous energy spectrum for the positron up to the maximum energy [16].

References

  1. Sahoo S, Sahoo S (2006) Physics Education 5-11. http://physics.unipune.ernet.in/~phyed/23.1/23.1_SSahoo.pdf. Accessed 21 Feb 2013

  2. Final Report Second of two 2008 NSAC Charges on the isotope development and production for research and applications program. Isotopes for the nation`s future along range plan. http://www.isotopes.gov/outreach/reports/NSACI_II_Report.pdf. Accessed 20 Feb 2013

  3. Kassis A (2008) Semin Nucl Med 38:358–366

    Article  Google Scholar 

  4. Ishiwata K, Kimura Y, Oda K, Ishii K, Sakata M, Kawasaki K, Nariai T, Suzuki Y, Ishibashi K, Mishina M, Hashimoto M, Ishikawa M, Toyohara J (2010) Geriatr Gerontol Int 10:S180–S196

    Google Scholar 

  5. Camargo EE (2001) J Nucl Med 42:611–623

    CAS  Google Scholar 

  6. Carrió I, González P, Storch M, Canessa J, Mitjavila M, Massardo T (2003) Medicina nuclear. Aplicaciones clínicas, Masson. S.A., Barcelona. ISBN 84-458-1291-2

  7. Kipper MS (2002) Appl Radiol 31:18–41

    Google Scholar 

  8. Quintero NY, Restrepo G, Cohen IM (2013) J Radioanal Nucl Chem 195:823–833

    Article  Google Scholar 

  9. Brüggemann R, Drescher-Kaden U (2003) Einführung in die modellgestützte Bewertung von Umwelt-chemikalien. Springer, Heidelberg

    Book  Google Scholar 

  10. Restrepo G, Mesa H, Llanos E (2006) J Math Chem 39:401–416

    Article  CAS  Google Scholar 

  11. Romesburg HCH (2004) Cluster Analysis for researchers. Lulu Press, Raleigh

    Google Scholar 

  12. Li Z, Ding Q, Zhang W (2011) Commun Comput Inf Sci 134:483–488

    Article  Google Scholar 

  13. Ferreira L, Hitchcock DB (2009) Commun Stat 8:1925–1949

    Google Scholar 

  14. XLSTAT (2009) http://xlstat-2009.fyxm.net/. Accessed 22 May 2012

  15. Restrepo G, Mesa H, Llanos EJ (2007) J Chem Inf Model 41:761–770

    Article  Google Scholar 

  16. Paans AMJ, Waarde AV, Elsinga PH, Willemsen ATM, Vaalburg W (2002) Methods 27:200

    Google Scholar 

  17. Pagani M, Stone-Elander S, Larsson SA (1997) Eu J Nucl Med Mol Imaging 24:1301–1327

    Article  CAS  Google Scholar 

  18. Ziessmann H, O′Malley J, Thrall JH (2007) Medicina nuclear: los requisitos en radiología, 3rd edn. Elsevier, España

    Google Scholar 

  19. Uribe E, Daza M, Restrepo G (2005) WSEAS Transactions on Information science and applications 2:1085–1090

    Google Scholar 

  20. Priss U (2006) In: Cronin B (ed) Annual Review of Information Science and Technology ASIST, 40: 521–543

  21. Park HM (2008) Univariate Analysis and Normality test using SAS Stata, and SPSS. Working paper. The University Information Technology Services (UITS) Center for Statistical and Mathematical Computing, Indiana University, USA

  22. Osborne JW (2010) Pract Assess Res Eval 15:1–9

    Google Scholar 

  23. Stephens LJ (1998) Theory and problems of beginning statistics (Schaum′s outline series). New York, McGraw-Hill

    Google Scholar 

  24. Yevtushenko, SA (2000) System of data analysis “Concept Explorer”. (In Russian). Proceedings of the 7th national conference on Artificial Intelligence KII-2000, 127–134

  25. Lenca P, Meyer P, Vaillant B, Lallich S (2008) Eur J Oper Res 184:610–628

    Article  Google Scholar 

  26. McNicholas PD, Murphy TB, O′Regan M (2008) Comput Stat Data An 52:4712–4721

    Article  Google Scholar 

  27. Kannan S, Bhaskaran R (2009) IJCSI 6:35–43

    Google Scholar 

  28. Kannan S, Bhaskaran R (2010) J. Computing 2:8–15

    Google Scholar 

  29. Ikonomovska E, Gjorgjevik D, Loskovska S (2007) Using Data Mining Technique for Coefficient Tuning of an Adaptive Tabu Search EUROCON. The International Conference on “Computer as a Tool”. Warsaw, September 9–12; p. 706–713

  30. Shivarudrapa V, Vimalnath KV (2005) Bullet Mater Sci 28:327

    Google Scholar 

  31. Qaim SM (2011) In: Vértes A, Nagy S, Klencsár Z, Lovas RG, Rösch F (eds) Handbook of Nuclear Chemistry. Springer Science Business Media B.V. doi:10.1007/978-1-4419-0720-2-39

  32. Qaim SM (2011) Radiochim Acta 99:611–625

    Article  CAS  Google Scholar 

  33. Berardi M, Appice A, Loglisci C, Leo P (2006) Foundations of intelligent systems. Lect Notes Comput Sci 4203:369–378

    Article  Google Scholar 

Download references

Acknowledgments

N. Y. Quintero thanks G. A. Aranda-Corral and M. Bal for their support and discussions about the application of FCA. Several scientists belonging to FCA community cited in the references are acknowledged for their enriching comments. G. Restrepo specially thanks the Universidad de Pamplona for the financial support to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Y. Quintero.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Quintero, N.Y., Restrepo, G. & Cohen, I.M. Relating β+ radionuclides’ properties by order theory. J Radioanal Nucl Chem 298, 1937–1946 (2013). https://doi.org/10.1007/s10967-013-2685-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2685-6

Keywords

  • β+ Radionuclides
  • Positron emission tomography
  • Formal concept analysis
  • Statistical data analysis
  • Association rules