Skip to main content
Log in

Comparison of uranium extraction from model fresh water on TiO–PAN and NaTiO–PAN composite absorbers

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Possibility of uranium extraction on titanium oxide (TiO)–polyacrylonitrile (PAN) and sodium titanate (NaTiO)–PAN composite absorbers prepared from hydrated TiO and NaTiO embedded into a matrix of PAN binder was studied. Both TiO–PAN and NaTiO–PAN absorbers might be advantageous for repeated extraction of uranium from fresh water. Appropriate flow rates were found up to 60 BV h−1 for both the absorbers. Elution of uranium and regeneration of both the absorbers may be accomplished by hydrochloric acid solutions of concentration 0.1 mol L−1 and more. Practical sorption capacity (up to 10 % break-through) from tap water containing 2.3 μg U mL−1 was ~4.6 and ~1.5 mg of uranium per 1 mL of swollen TiO–PAN and NaTiO–PAN absorber, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alexandre D, Vistoli PP (1985) Advances in uranium ore processing and recovery from non-conventional resources. IAEA-TC-491/17. IAEA, Vienna, p 289

  2. Heyne W (1995) In: Proc. GeoCongress, October 1995, Freiberg; Köln, Germany, p 255

  3. Bitte J (1985) Advances in Uranium ore processing and recovery from non-conventional resources. IAEA-TC-491/18. IAEA, Vienna, p 299

  4. Kim J, Tsouris C, Mayes RT, Oyola Y, Saito T, Janke CJ, Dai S, Schneider E, Sachde D (2013) Sep Sci Technol 48:367–387

    Article  CAS  Google Scholar 

  5. Hotchkis MAC, Child D, Zorko B (2010) Nucl Instrum Methods B 268:1257–1260

    Article  CAS  Google Scholar 

  6. Steier P, Bichler M, Keith Fifield L, Golser R, Kutschera W, Priller A, Quinto F, Richter S, Srncik M, Terrasi P, Wacker L, Wallner A, Wallner G, Wilcken KM, Wild EM (2008) Nucl Instrum Methods B 266:2246–2250

    Article  CAS  Google Scholar 

  7. Nilchi A, Bablou AA, Rafiee R, Kalal HS (2008) React Funct Polym 68:1665–1670

    Article  CAS  Google Scholar 

  8. Kiliari T, Pashalidis I (2012) Radiochim Acta 100:439–443

    Article  CAS  Google Scholar 

  9. Lehto J (1987) Sodium titanate for solidification of radioactive wastes—preparation, structure and ion properties. Academic dissertation, University of Helsinki. Report series in radiochemistry 5/1987

  10. Crisan M, Braileanu A, Raileanu M, Crisan D, Teodorescu VS, Birjega R, Marinescu VE, Madarasz J, Pokol G (2007) J Therm Anal Calorim 88:171–176

    Article  CAS  Google Scholar 

  11. Valencia S, Vargas X, Rios L, Restrepo G, Marín JM (2013) J Photochem Photobiol A 251:175–181

    Article  CAS  Google Scholar 

  12. Weiser HB, Milligan WO (1933) J Phys Chem 38:513–519

    Article  Google Scholar 

  13. Lynch RW, Dosch RG, Kenna BT, Johnstone JK, Nowak EJ (1976) Management of radioactive wastes from the nuclear fuel cycle. IAEA, Vienna 361

    Google Scholar 

  14. Heinonen OJ, Lehto J, Miettinen J (1981) Radiochim Acta 28:93–96

    CAS  Google Scholar 

  15. Clearfield A, Lehto J (1988) J Solid State Chem 73:98–106

    Article  CAS  Google Scholar 

  16. Lehto J, Clearfield A (1987) J Radioanal Nucl Chem 118:1–13

    Article  CAS  Google Scholar 

  17. Heinonen OJ (1980) Radiochem Radioact Lett 43:293–300

    CAS  Google Scholar 

  18. Šebesta F (1997) J Radioanal Nucl Chem 220:77–88

    Article  Google Scholar 

  19. Šebesta F (1999) Natural microporous materials in environmental technology. Kluwer Academic Publishers, Dordrecht, p 473 NATO science series

    Book  Google Scholar 

  20. Berák L, Uher E, Marhol M (1975) Atomic Energy Rev 13:325–366

    Google Scholar 

  21. Baran V, Caletka R, Tympl M, Urbánek V (1975) J Radioanal Chem 24:353–359

    Article  CAS  Google Scholar 

  22. Caletka R, Tympl M (1976) J Radioanal Chem 30:155–172

    Article  CAS  Google Scholar 

  23. Takeuchi T, Sokukawa M, Kimoto R (1982) Ion exchanger of hydrated oxide of Ti, Zr, or Sn and cured polyester, and exchange method. U.S. patent 4362626

  24. Echigo Y, Suematsu Y, Ishikura T (1986) Spherical ion exchange resin having matrix-bound metal hydroxide, method for producing the same and method for adsorption treatment using the same. U.S. patent 4576969

  25. Dosch RG (1980) Final Report on the application of titanates, niobates and tantalates to neutralized defense waste decontamination—materials, properties, physical forms and degeneration techniques. Sandia National Laboratories, SAND 80-1212

  26. Šebesta F (1992) Exchanger composed from an active component and a binding organic matrix and the way of its production. Czech patent A.O. 273369

Download references

Acknowledgments

Financial support by the Ministry of Industry and Trade of the Czech Republic under contract No. FR-TI3/245 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Špendlíková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motl, A., Šebesta, F., John, J. et al. Comparison of uranium extraction from model fresh water on TiO–PAN and NaTiO–PAN composite absorbers. J Radioanal Nucl Chem 298, 2057–2063 (2013). https://doi.org/10.1007/s10967-013-2641-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2641-5

Keywords

Navigation