Skip to main content
Log in

Validation of chemical separation method for the determination of 63Ni using TDCR technique in steel samples of APSARA reactor

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Activity Standards of 63Ni was used to benchmark our triple-to-double coincidence ratio (TDCR) primary standardization instrument Hidex 300SL TDCR device under different chemical and colour quench conditions. The results were compared with a secondary standardization instrument Tricarb 2910TR that employs transformed spectral index of external standard to assess the quench level of samples. Excellent agreement was observed (within 3 %) for a wide range of standard activity and quench conditions. The method was subsequently used for validating chemical separation procedure for estimation of 63Ni in neutron activated standard nickel and steel samples. Further the method was applied for estimation of 63Ni from decommissioning waste of a research reactor, APSARA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. International Atomic Energy Agency IAEA (1998) Radiological characterization of shut down nuclear reactors for decommissioning purposes, technical reports series no. 389, IAEA, Vienna

  2. Beasley TM, Held EE (1969) Nickel-63 in marine and terrestrial biota, soil and sediment. Science 164:1161–1163

    Article  CAS  Google Scholar 

  3. Bhat IS, Iyer RS, Chandramouli S (1976) Method for separation and measurement of Ni63 in environmental samples. Anal Chem 48:224–231

    Article  CAS  Google Scholar 

  4. Yonezawa C, Sagawa T, Hoshi M, Tachikawa EJ (1983) Rapid determination of specific activity of nickel63. J Radioanal Nucl Chem 78:7–14

    Article  CAS  Google Scholar 

  5. Holm E, Roos P, Skwarzec B (1992) Radioanalytical studies of nickel-63 from fallout. Appl Radiat Isot 43:371–376

    Article  CAS  Google Scholar 

  6. Hoeppener-Kramar Pimpl M, Willmann F (1997) Application of procedures for low level radionuclide analysis in environmental monitoring for the purpose clearance measurements of materials from decommissioning of nuclear facilities. J Radioanal Nucl Chem 226(1–2):99–103

    Article  Google Scholar 

  7. Geckeis H, Henstschel D, Jensen D, Gortzen A, Kerner N (1997) Detemination of Fe-55 and Ni-63 using semi-preparative ion chromatography: a feasibility study. J Anal Chem 357:864–869

    Article  CAS  Google Scholar 

  8. Numariji M, Oki, Suzuki T, Miura T, Taira M, Kanda Y, Kondo K (1994) Estimation of nickel -63 in steel and copper activated at high energy accelerator facilities. Appl Radiat Isot 45:509–514

    Article  Google Scholar 

  9. Kaye JH, Strebin RS, Nevissi AE (1994) Measurement of Ni63 in highly radioactive Hanford waste by liquid scintillation counting. J Radioanal Nucl Chem Articles 180:197–200

    Article  CAS  Google Scholar 

  10. Scheuerere C, Schupfner R, Schuttelkopf H (1995) A very sensitive LSC procedure to determine Ni-63 in environmental samples, steel and concrete. J Radioanal Nucl Chem Articles 193:127–131

    Article  Google Scholar 

  11. Horwitz EP, Chiarizia R, Dietz ML, Diamond H, Nelson DM (1993) Separation and pre-concentration of actinides from acidic media by extraction chromotography. Anal Chim Acta 281:361–372

    Article  CAS  Google Scholar 

  12. Hou XL, Ostergaard LF, Nielsen SP (2005) Deterination of 63Ni ad 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting. Anal Chim Acta 535:297–307

    Article  CAS  Google Scholar 

  13. Hou XL (2007) Radiochemical analysis of radionuclides difficult to measure for waste characterization in decommissioning of nuclear facilities. J Radioanal Nucl Chem 273(1):43–48

    Article  CAS  Google Scholar 

  14. Harvey BR, Sutton GA (1970) Liquid scintillation counting of nickel-63. Appl Radiat Isot 21:519–523

    Article  CAS  Google Scholar 

  15. Holm E, Oregioni B, Vas D, Pettersson H, Rioseco J, Nilsson U (1990) Ni63 Radiochemical separation and measurement with ion implanted silicon detector. J Radioanal Nucl Chem Articles 138:111–118

    Article  CAS  Google Scholar 

  16. Chul lee, Martin JE, Griffin HC (1997) Optimisation of measurement of 63Ni reactor waste samples using 65Ni as tracer. Appl Radiat Isot 48:639–642

    Article  Google Scholar 

  17. Shibata S, Takamiya K, Ota Y, Nogawa N, Ito Y, Shibata T (2007) Measurement of 63Ni produced in Cu samples by the Hiroshima atomic bomb. J Radioanal Nucl Chem 273(3):517–520

    Article  CAS  Google Scholar 

  18. Broda R, Cassette P, Kossert K (2007) Radionuclide metrology using liquid scintillation counting. Metrologia 44:S36–S52

    Article  CAS  Google Scholar 

  19. Johansson IC, Sephton JP (2010) Validation of a new TDCR system at NPL. Appl Radiat Isot 68:1537–1539

    Article  CAS  Google Scholar 

  20. Nähle K, Cassette P (2010) Activity standardisation of 3H with the new TDCR system at PTB. Appl Radiat Isot 68:1534–1536

    Article  Google Scholar 

  21. Ivan C, Wätjen AC, Cassette P, Sahagia M, Antohe A, Grogorescu EL (2010) Participation in the CCRI(II)-K2.H-3 comparison and study of the new TDCR-LS counter with 6CPMs. Appl Radiat Isot 68:1543–1545

    Article  CAS  Google Scholar 

  22. Collé R (2009) Radionuclidic standardization by primary methods: an overview. J Radioanal Nucl Chem 280(2):265–273

    Article  Google Scholar 

  23. Gudelis A, Vinčiūnas A, Butkus P, Pranaitis M (2012) Measurements of some radionuclides using a new TDCR system and an ultra low-level conventional LSC counter in CPST, Lithuania. Appl Radiat Isot 70:2204–2208

    Article  CAS  Google Scholar 

  24. Taddei MHT, Macacini JF et al (2013) A comparative study using liquid scintillation counting and X-ray spectrometry to determine 55Fe in radioactive wastes. J Radioanal Nucl Chem 295:2267–2272

    Article  CAS  Google Scholar 

  25. Das D, Sládek P, Janda J (2010) Measuring alpha and beta activity of filter swab samples with LSC. J Radioanal Nucl Chem 286:513–517

    Article  Google Scholar 

  26. Mukhopadhya PK(2001) The operating software of the PHAST PC-MCA card, In: Proceedings of symposium on intelligent nuclear instrumentation, INI, Mumbai, p 307

  27. Application note, HIDEX 300SL™, DOC 413-001 Version 1.0

  28. Currie LA (1968) Limits for qualitative detection and quantitative determination: application to radiochemistry. Anal Chem 40:586–593

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Dr. D. N. Sharma, Director, Health Safety and Environment Group (HS&EG) for the keen interest and valuable suggestions. The co-operation and support extended by Shri. Shibu Thomas, Reactor Superintendent, APSARA, Reactor Operations Division (ROD) to facilitate sample collection is gratefully acknowledged. We thank the technical support provided by Dr. N. L. Misra, Fuel Chemistry Division (FCD) during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Priya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priya, S., Murali, M.S., Mary, G. et al. Validation of chemical separation method for the determination of 63Ni using TDCR technique in steel samples of APSARA reactor. J Radioanal Nucl Chem 298, 1551–1557 (2013). https://doi.org/10.1007/s10967-013-2591-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2591-y

Keywords

Navigation