Skip to main content
Log in

State of uranyl silicates MII(HSiUO6)2 ·6H2O (MII=Mn, Co, Ni, Cu, Zn) in aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Uranyl silicates with formula MII(HSiUO6)2·6H2O (MII=Mn, Co, Ni, Cu, Zn) were investigated in aqueous solutions in the pH range of 0÷14. The pH interval was established where compounds preserve their composition and structure. It varies in the pH range of (3.5–4.0)÷(10.8–11.4) and depends on MII type. Out of this pH interval investigated uranyl silicates convert to the compounds of other composition and structure, such as amorphous silica, polyuranates and hydroxides of 3d-transition elements. The solubility of MII(HSiUO6)2·6H2O was determined, it’s value changes on the several orders of magnitude from 10−6 M in subalkali solutions to 10−3 M in acid and strongly alkaline media. Using obtained experimental data the solubility products and solubility curves of uranyl silicates were calculated by mathematical modeling. Also the speciation diagrams of uranium (VI), silicon (IV) and M (II) in solutions and solids were plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lehmann S, Geipel G, Foerstendorf H, Bernhard G (2008) J Radioanal Nucl Chem 275:633–642

    Article  CAS  Google Scholar 

  2. Vochten RA et al (1997) Can Mineral 35:735–741

    CAS  Google Scholar 

  3. Chernorukov NG, Knyazev AV, Nipruk OV (2003) Radiochemistry 49:300–304

    Google Scholar 

  4. Chernorukov NG, Knyazev AV, Sergacheva IV (2005) Russ J Inorg Chem 50:1–11

    Google Scholar 

  5. Vochten R, Blaton N, Peeters O (1997) Neues Jahrbuch fur Mineralogie Monatshefte 12:569–576

    Google Scholar 

  6. Rosenzweig A, Ryan RR (1975) Amer Mineral 60:448–453

    CAS  Google Scholar 

  7. Ryan RR, Rosenzweig A (1977) Cryst Struct Comm 6:611

    CAS  Google Scholar 

  8. Stohl FV, Smith DK (1981) Amer Mineral 66:610–625

    Google Scholar 

  9. Viswanathan K, Harneit O (1986) Amer Mineral 71:1489–1493

    CAS  Google Scholar 

  10. Ginderow D (1988) Acta Crystallogr A 44:421–424

    Google Scholar 

  11. Nguyen SN, Silva RJ, Weed HC, Andrews JE (1992) J Chem Thermodyn 24:359–376

    Article  CAS  Google Scholar 

  12. Moll H, Geipel G, Matz W et al (1996) Radiochim Acta 74:3–7

    CAS  Google Scholar 

  13. Shvareva TY, Mazeina L, Gorman-Lewis D, Burns PC et al (2011) Geochim Cosmochim Acta 75:5269–5282

    Article  CAS  Google Scholar 

  14. Ilton ES, Liu CX, Yantasee W et al (2006) Geochim Cosmochim Acta 70:4836–4849

    Article  CAS  Google Scholar 

  15. Perez I, Casas I, Martin M, Bruno J (2000) Geochim Cosmochim Acta 64:603–608

    Article  CAS  Google Scholar 

  16. Gorman-Lewis D, Burns PC, Fein JB (2008) J Chem Thermodyn 40:335–352

    Google Scholar 

  17. Miyshlyaeva LV, Krasnoschekova VV (1972) Analiticheskaya khimiya kremniya (Analytical chemistry of Silicon). Nauka, Moskow

    Google Scholar 

  18. Lazarev AI, Kharlamov IP, Yakovlev PYa et al (1976) Spravochnik khimika-analitika. Metallurgiya, Moskow

    Google Scholar 

  19. Vinogradov AP (1962) Analiticheskaya khimiya urana. Akademiya nauk, Moskow

    Google Scholar 

  20. Markov VK, Vernyi EA, Vinogradov AV et al (1964) Uran. Metody ego opredeleniya (Uranium. Determination Methods). Atomizdat, Moscow

    Google Scholar 

  21. Lavrukhina AK, Yukina LV (1974) Analiticheskaya khimiya margantsa (Analytical Chemistry of Manganese). Nauka, Moscow

    Google Scholar 

  22. Pyatnitskii IV (1965) Analiticheskaya khimiya kobal’ta (Analytical Chemistry of Cobalt). Nauka, Moscow

    Google Scholar 

  23. Peshkova VM, Savostina VM (1966) Analiticheskaya khimiya nikelya (Analytical Chemistry of Nickel). Nauka, Moscow

    Google Scholar 

  24. Podchainova VN, Simonova LN (1990) Analiticheskaya khimiya medi (Analytical Chemistry of Copper). Nauka, Moscow

    Google Scholar 

  25. Zhivopistsev VP, Selezneva EA (1975) Analiticheskaya khimiya tsinka (Analytical Chemistry of Zinc). Nauka, Moscow

    Google Scholar 

  26. Guillaumont R, Fanghanel T, Fuger J et al (2003) Update on the chemical thermodynamics of uranium, neptunium, and plutonium, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  27. Moll H, Geipel G, Brendler V, Bernhard G, Nitshe HJ (1998) Alloys Compd 271–273:765–768

    Article  Google Scholar 

  28. Glushko VP (1965–1981)Termicheskie konstanty veshchestv (Thermal Constants of Substances). Akad. Nauk SSSR, Moscow

  29. Martell AE (2001) NIST critically selected stablity constants of metal complexes, database, 6.0 for windows. US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Gaithersburg, MD

  30. Grenthe I, Fuger J, Koning R et al (2004) Chemical thermodynamics of uranium. North-Holland, Amsterdam

    Google Scholar 

  31. Kiseleva EK, Suslennikova VM (1959) Spravochnoe rukovodstvo po prigotovleniyu titrovannykh rastvorov I ustanovke ikh titrov (handbook on preparation of titrated solutions and determination of their titers). Akad. im. A.F, Mozhaiskogo

    Google Scholar 

  32. Chernorukov NG, Nipruk OV, Suleimanov EV, Pykhova JuP (2009) Radiochemistry 51:388–395

    Google Scholar 

  33. Jr Boisen et al (1994) Phys Chem Miner 21:269

    Google Scholar 

  34. Kovba LM (1972) Radiochemistry 14:727–730

    CAS  Google Scholar 

  35. Szytula A, Murasik A, Balanda M (1971) Phys Stat Sol 43:125–128

    Article  CAS  Google Scholar 

  36. Database of Ionic Radii. http://abulafia.mt.ic.ac.uk/shannon/ptable.php

Download references

Acknowledgments

The investigation was finance supported by Federal Goal Program “Scientific and scientific-pedagogical cadres of innovative Russia 2009–2013” on direction “Radiochemistry. Chemistry of high energies” (No. 844P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana Nipruk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nipruk, O., Chernorukov, N., Zakharycheva, N. et al. State of uranyl silicates MII(HSiUO6)2 ·6H2O (MII=Mn, Co, Ni, Cu, Zn) in aqueous solutions. J Radioanal Nucl Chem 298, 519–529 (2013). https://doi.org/10.1007/s10967-013-2544-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2544-5

Keywords

Navigation