Skip to main content

Environmental radioactivity measurements in north–western Greece following the Fukushima nuclear accident

Abstract

The impact of the Fukushima nuclear accident in north–western Greece was assessed through an environmental monitoring programme activated by the Nuclear Physics Laboratory of the University of Ioannina. Measurements of 131I were carried out in atmospheric particulate, ovine milk and grass samples. In daily aerosol samplings, radioiodine was first detected on March 25–26, 2011 and reached maximum levels, up to 294 μBq m−3, between April 2 and April 4, 2011. In ovine milk samples, 131I concentrations ranged from 2.0 to 2.7 Bq L−1 between April 2 and April 6, 2011, while an average activity of 2.7 Bq kg−1 was measured in grass samples on April 4, 2011. The 134,137Cs isotopes were below detection limits in all samples and could only be determined in the air, by analysis of multiple daily filters. A maximum average activity concentration of 137Cs amounting to 24 μBq m−3 was measured during the period from April 5 to April 9, 2011, with the 134Cs/137Cs activity ratio being close to unity. Activity concentrations were consistent with measurements conducted in other parts of the country and were well below those reported in May 1986 after the Chernobyl accident. The committed effective dose to the whole body and to the thyroid gland from inhalation of 131I was estimated for the adult and infant population and was found to be of no concern for the public health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    International Atomic Energy Agency (2011) Briefing on Fukushima nuclear accident. www.iaea.org/newscenter/news/tsunamiupdate01.html/. Accessed 12 Apr 2011

  2. 2.

    Bolsunovsky A, Dementyev D (2011) Evidence of the radioactive fallout in the center of Asia (Russia) following the Fukushima nuclear accident. J Environ Radioact 102:1062–1064

    Article  CAS  Google Scholar 

  3. 3.

    Diaz Leon J, Jaffe DA, Kaspar J, Knecht A, Miller ML, Robertson RGH, Schubert AG (2011) Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA. J Environ Radioact 102:1032–1038

    Article  Google Scholar 

  4. 4.

    Lozano RL, Hernández-Ceballos MA, Adame JA, Casas-Ruíz M, Sorribas M, San Miguel EG, Bolívar JP (2011) Radioactive impact of Fukushima accident on the Iberian Peninsula: evolution and plume previous pathway. Environ Int 37:1259–1264

    Article  CAS  Google Scholar 

  5. 5.

    Lujanienė G, Byčenkienė S, Povinec PP, Gera M (2012) Radionuclides from the Fukushima accident in the air over Lithuania: measurement and modelling approaches. J Environ Radioact 114:71–80

    Article  Google Scholar 

  6. 6.

    Manolopoulou M, Stoulos S, Ioannidou A, Vagena E, Papastefanou C (2012) Radiation measurements and radioecological aspects of fallout from the Fukushima nuclear accident. J Radioanal Nucl Chem 292:155–159

    Article  CAS  Google Scholar 

  7. 7.

    Masson O, Baeza A, Bieringer J, Brudecki K, Bucci S, Cappai M, Carvalho FP, Connan O, Cosma C, Dalheimer A, Didier D, Depuydt G, De Geer LE, De Vismes A, Gini L, Groppi F, Gudnason K, Gurriaran R, Hainz D, Halldórsson Ó, Hammond D, Hanley O, Holeý K, Homoki Zs, Ioannidou A, Isajenko K, Jankovic M, Katzlberger C, Kettunen M, Kierepko R, Kontro R, Kwakman PJM, Lecomte M, Leon Vintro L, Leppänen A-P, Lind B, Lujaniene G, McGinnity P, McMahon C, Malá H, Manenti S, Manolopoulou M, Mattila A, Mauring A, Mietelski JW, Møller B, Nielsen SP, Nikolic J, Overwater RMW, Pálsson SE, Papastefanou C, Penev I, Pham MK, Povinec PP, Ramebäck H, Reis MC, Ringer W, Rodriguez A, Rulík P, Saey PRJ, Samsonov V, Schlosser C, Sgorbati G, Silobritiene BV, Söderström C, Sogni R, Solier L, Sonck M, Steinhauser G, Steinkopff T, Steinmann P, Stoulos S, Sýkora I, Todorovic D, Tooloutalaie N, Tositti L, Tschiersch J, Ugron A, Vagena E, Vargas A, Wershofen H, Zhukova O (2011) Tracking of airborne radionuclides from the damaged Fukushima Dai-ichi nuclear reactors by European networks. Environ Sci Technol 45:7670–7677

    Article  CAS  Google Scholar 

  8. 8.

    Pittauerová D, Hettwig B, Fischer HW (2011) Fukushima fallout in Northwest German environmental media. J Environ Radioact 102:877–880

    Article  Google Scholar 

  9. 9.

    Debertin K (1984) The effect of correlations in the efficiency calibration of germanium detectors. Nucl Instrum Methods 226:566–568

    Article  CAS  Google Scholar 

  10. 10.

    International Organization for Standardization, ISO 11929-3:2000 (2000) Determination of the detection limit and decision threshold for ionizing radiation measurements—Part 3: fundamentals and application to counting measurements by high resolution gamma spectrometry, without the influence of sample treatment

  11. 11.

    Kritidis P, Florou H, Eleftheriadis K, Evangeliou N, Gini M, Sotiropoulou M, Diapouli E, Vratolis S (2012) Radioactive pollution in Athens, Greece due to the Fukushima nuclear accident. J Environ Radioact 114:100–104

    Article  CAS  Google Scholar 

  12. 12.

    Potiriadis C, Kolovou M, Clouvas A, Xanthos S (2012) Environmental radioactivity measurements in Greece following the Fukushima Daiichi nuclear accident. Radiat Prot Dosimetry 150:441–447

    Article  CAS  Google Scholar 

  13. 13.

    Kritidis P, Florou H (2001) Radiological impact of the Chernobyl accident in Greece—a ten year retrospective synopsis. Health Phys 80:440–446

    Article  CAS  Google Scholar 

  14. 14.

    Barsanti M, Conte F, Delbono I, Iurlaro G, Battisti P, Bortoluzzi S, Lorenzelli R, Salvi S, Zicari S, Papucci C, Delfanti R (2012) Environmental radioactivity analyses in Italy following the Fukushima Dai-ichi nuclear accident. J Environ Radioact 114:126–130

    Article  CAS  Google Scholar 

  15. 15.

    Institut de radioprotection et de sûreté nucléaire (2011) Synthèse des résultats des mesures de la radioactivité dans le cadre de la surveillance de l’impact à très longue distance des rejets de l’accident de Fukushima. Note d’information no 15. http://www.irsn.fr/FR/Actualites_presse/Actualites/Pages/201103_situation_en_france.aspx. Accessed 7 Dec 2011

  16. 16.

    Beresford NA, Barnett CL, Howard BJ, Howard DC, Wells C, Tyler AN, Bradley S, Copplestone D (2012) Observations of Fukushima fallout in Great Britain. J Environ Radioact 114:48–53

    Article  CAS  Google Scholar 

  17. 17.

    Cosma C, Iurian AR, Niţă DC, Begy R, Cîndea C (2012) Indicators of the Fukushima radioactive release in NW Romania. J Environ Radioact 114:94–99

    Article  CAS  Google Scholar 

  18. 18.

    Consejo de Seguridad Nuclear (2011) Vigilancia radiológica ambiental en España. https://www.csn.es/index.php?optionOcom_content&viewOarticle&idO17270&ItemidO755&langOes. Accessed 6 Dec 2011

  19. 19.

    Commission Implementing Regulation (EU) No 351/2011 of 11 April 2011 amending Regulation (EU) No 297/2011 imposing special conditions governing the import of feed and food originating in or consigned from Japan following the accident at the Fukushima nuclear power station. Official Journal of the European Union L 97/20-23 of 12 April 2011

  20. 20.

    Assimakopoulos PA, Ioannides KG, Pakou AA (1988) The environmental behaviour of 131I in northwestern Greece following the nuclear reactor accident at Chernobyl. Health Phys 55:783–791

    Article  CAS  Google Scholar 

  21. 21.

    Evrard O, Van Beek P, Gateuille D, Pont V, Lefèvre I, Lansard B, Bonté P (2012) Evidence of the radioactive fallout in France due to the Fuushima nuclear accident. J Environ Radioact 114:54–60

    Article  CAS  Google Scholar 

  22. 22.

    Steinhauser G, Merz S, Hainz D, Sterba JH (2012) Artificial radioactivity in environmental media (air, rainwater, soil, vegetation) in Austria after the Fukushima nuclear accident. Environ Sci Pollut Res. doi:10.1007/s11356-012-1140-5

    Google Scholar 

  23. 23.

    Baeza A, Corbacho JA, Rodríguez A, Galván J, García-Tenorio R, Manjón G, Mantero J, Vioque I, Arnold D, Grossi C, Serrano I, Vallés I, Vargas A (2012) Influence of the Fukushima Dai-ichi nuclear accident on Spanish environmental radioactivity levels. J Environ Radioact 114:138–145

    Article  CAS  Google Scholar 

  24. 24.

    International Commission of Radiological Protection (1995) Age-dependent doses to members of the public from intake of radionuclides—Part 4 inhalation dose coefficients. ICRP Publication 71. Ann ICRP 25(3–4):1–405

    Google Scholar 

  25. 25.

    International Atomic Energy Agency (1996) International basic safety standards for protection against ionizing radiation and for the safety of radiation sources. Safety series no. 115. International Atomic Energy Agency, Vienna

    Google Scholar 

  26. 26.

    Ioannides K, Patiris D, Papachristodoulou C (2009) Indoor radon concentrations in workplaces and dwellings in north–western Greece. Radioprotection 44:165–169

    Article  Google Scholar 

Download references

Acknowledgments

Gamma-spectrometry measurements were carried out in the facilities of the Archaeometry Center of the Network of Research Supporting Laboratories of the University of Ioannina.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Ioannides.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ioannides, K., Stamoulis, K. & Papachristodoulou, C. Environmental radioactivity measurements in north–western Greece following the Fukushima nuclear accident. J Radioanal Nucl Chem 298, 1207–1213 (2013). https://doi.org/10.1007/s10967-013-2527-6

Download citation

Keywords

  • Fukushima
  • Radioiodine
  • Radiocaesium
  • Dose assessment
  • Greece