Skip to main content

Cross-section calculations of proton induced (p,n) and (p,2n) reactions for production of diagnostic 67Ga, 81Rb, 111In, 123,124I, 123Cs and 123Xe radioisotopes

Abstract

Investigation of pre-equilibrium (PEQ) and equilibrium (EQ) effects on proton induced reactions for production of radioisotopes are very important. Therefore, in this study, we have calculated the PEQ and EQ cross-sections for 67Zn(p,n)67Ga, 68Zn(p,2n)67Ga, 82Kr(p,2n)81Rb, 111Cd(p,n)111In, 112Cd(p,2n)111In, 123Te(p,n)123I, 124Te(p,2n)123I, 124Te(p,n)124I and 124Xe(p,2n)123Cs reactions for production diagnostic radioisotopes. Calculations have been performed by using the hybrid model, geometry dependent hybrid model and full exciton model of PEQ reaction mechanism with 1–40 MeV proton incident energy. We have also investigated the EQ effects on these reactions using the Weisskopf–Ewing model in the same energy range. The excitation functions including the PEQ and EQ effects on these reactions are evaluated by using the ALICE/ASH (2006) and the TALYS 1.4 (2011) codes. Our results have shown that using these codes is suitable for production diagnostic isotopes mentioned above. To obtain excitation functions for producing the diagnostic radioisotopes the PEQ mechanism has been found more dominant than that of the EQ. The results are discussed and compared with the available experimental data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. IAEA (2010) Nuclear data for the production of therapeutic radionuclides. International Atomic Energy Agency, Vienna

    Google Scholar 

  2. IAEA (2011) Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. International Atomic Energy Agency, Vienna

    Google Scholar 

  3. National Nuclear Data Center (2009) EXFOR data files. http://www.nndc.bnl.gov/exfor/exfor00.htm

  4. Broeders CHM, Konobeyev AY (2006) Semi-empirical systematics of (n,p) reaction cross-section at 14.5, 20, and 30 MeV. Nucl Phys A 780:130–145

    Article  Google Scholar 

  5. Forrest RA, Kopecky J (2007) Statistical analysis of cross sections—a new tool for data validation. Fusion Eng Des 82:73–90

    Article  CAS  Google Scholar 

  6. Goyal SL, Gur P (2009) Empirical relation and establishment of shell effects in (n,2n) reaction cross-sections at 14 MeV. Pramana 72(2):355–362

    Article  CAS  Google Scholar 

  7. Sadeghi M, Zandi N, Bakhtiari M (2012) Nuclear model calculation for cyclotron production of 61Cu as a PET imaging. J Radioanal Nucl Chem 292:777–783

    Article  CAS  Google Scholar 

  8. Van der Meulen NP, Steyn GF, Van der Walt TN, Szelecsenyi F, Kovacs Z, Raubenheimer HG (2010) The isolation of 133Ba produced by proton-induced reactions on Cs using cation exchange chromatography. J Radioanal Nucl Chem 285:491–498

    Article  Google Scholar 

  9. Noujaim AA (1981) Gallium-67 and related elements. Int J Nucl Med Biol 8(4):215–388

    Article  Google Scholar 

  10. Doczi R, Takacs S, Tarkanyi F, Scholten B, Qaim SM (2000) Possibility of production of 81Rb via the 80Kr(d,n) reaction at a small cyclotron. Radiochim Acta 88:135–137

    Article  CAS  Google Scholar 

  11. Krichner PT (ed) (1983) Nuclear medicine review syllabus. Society of Nuclear Medicine, New York

    Google Scholar 

  12. Zarie K, Hammad NA, Azzam A (2006) Excitation functions of (p,xn) reactions on natural tellurium at low energy cyclotron: relevance to the production of medical radioisotope 123I. J Nucl Radiat Phys 1:93–105

    Google Scholar 

  13. Kondo K, Lambrecht RM, Wolf AP (1977) Iodine-123 production for radiopharmaceuticals excitation functions of the Te-124(P,2N)I-123 and Te-124(P,N)I-124 reactions and the effect of target enrichment on radionuclidic purity. Appl Radiat Isot 28(4):395–401

    Article  CAS  Google Scholar 

  14. Hoffman RD, Kelley K, Dietrich FS, Bauer R, Mustafa M (2005) Neutron and charged-particle induced cross sections for radiochemistry in the region of Samarium, Europium, and Gadolinium. Lawrence Livermore National Laboratory, UCRL-TR-211558, Livermore

  15. Griffin JJ (1966) Statistical model of intermediate structure. Phys Rev Lett 17:478–481

    Article  CAS  Google Scholar 

  16. Blann M (1971) Hybrid model for pre-equilibrium decay in nuclear reactions. Phys Rev Lett 27:337–340

    Article  CAS  Google Scholar 

  17. Blann M, Vonach HK (1983) Global test of modified pre-compound decay models. Phys Rev C 28:1475–1492

    Article  CAS  Google Scholar 

  18. Gudima KK, Mashnik SG, Toneev VD (1983) Cascade-exciton model of nuclear reactions. Nucl Phys A 401:329–361

    Article  Google Scholar 

  19. Weisskopf VF, Ewing DH (1940) On the yield of nuclear reactions with heavy elements. Phys Rev 57:472–485

    Article  CAS  Google Scholar 

  20. Hauser W, Feshbach H (1952) The inelastic scattering of neutrons. Phys Rev 87:366–373

    Article  CAS  Google Scholar 

  21. Broeders, CHM, Konobeyev AYu, Korovin AYu, Lunev VP, Blann M (2006) ALICE/ASH—pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, FZK 7183, May 2006, http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf

  22. Koning A, Hilaire S, Goriely S (2011) Talys 1.4, a nuclear reaction program, user manual. Nuclear Research and Consultancy Group (NRG), Netherlands. The webpage for TALYS is www.talys.eu

  23. Blann M (1991) ALICE-91, statistical model code system with fission competition, RSIC Code, Package PSR-146. Lawrence Livermore National Laboratory, Livermore

    Google Scholar 

  24. Koning A, Hilaire S, Duijvestijn M (2012) TALYS. http://www.talys.eu/more-about-talys/talys-general-features/

  25. Gruppelaar H, Nagel P, Hodgson PE (1986) Pre-equilibrium processes in nuclear reaction theory: the state of the art and beyond. Riv Nuovo Cimento 9(7):1–46

    Article  Google Scholar 

  26. Gadioli E, Hodgson PE (1992) Pre-equilibrium nuclear reactions. Oxford University Press, Oxford

    Google Scholar 

  27. Koning AJ, Duijvestijn MC (2004) A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential. Nucl Phys A744:15–76

    CAS  Google Scholar 

  28. Kalbach C (1986) Two-component exciton model: basic formalism away from shell closures. Phys Rev C 33:818–833

    Article  CAS  Google Scholar 

  29. Takacs S, Tarkanyi F, Hermanne A (2005) Validation and upgrade of the recommended cross section data of charged particle reactions to produce gamma emitter radioisotopes. Nucl Instrum Methods Phys Res Sect B 240(4):790–802

    Article  CAS  Google Scholar 

  30. Szelecsenyi F, Boothe TE, Takacs S, Tarkanyi F, Tavano E (1998) Evaluated cross section and thick target yield data bases of Zn+p processes for practical applications. Appl Radiat Isot 49(8):1005–1032

    Article  Google Scholar 

  31. Hermanne A (1997) Evaluated cross section and thick target yield data of Zn+P processes for practical applications. Exfor:D4093

  32. Levkovskij VN (1991) Activation cross section nuclides of average masses (A = 40–100) by protons and alpha-particles with average energies (E = 10–50 MeV). Act.Cs. By Protons and Alphas, Moscow, Exfor:A0510

  33. Little FE, Lagunas-Solar MC (1983) Cyclotron production of Ga-67. Cross sections and thick-target yields for the Zn-67(p,n) and Zn-68(p,2n) reactions. Appl Radiat Isot 34(3):631–637

    Article  CAS  Google Scholar 

  34. Gul K (2001) Calculations for the excitation functions of 3–26 MeV proton reactions on 66Zn, 67Zn and 68Zn. Appl Radiat Isot 54:311–318

    Article  CAS  Google Scholar 

  35. Hermanne A, Szelecsenyı F, Sonck M, Takacs S, Tarkanyı F, Van Den Winkel P (1999) New cross section data on 68Zn(p,2n)67Ga and natZn(p,xn)67Ga nuclear reactions for the development of a reference data base. J Radioanal Nucl Chem 240:623–630

    Article  CAS  Google Scholar 

  36. Hermanne A, Walravens N, Cicchelli O (1991) Optimization of isotope production by cross section determination. Exfor Code:#D0494

  37. Kovacs Z, Tarkanyi F, Qaim SM, Stocklin G (1991) Excitation functions for the formation of some radioisotopes of rubidium in proton induced nuclear reactions on Kr-nat, Kr-82 and Kr-83 with special reference to the production of Rb-81(Kr-81-m)generator radionuclide. Appl Radiat Isot 42(4):329–335

    Article  CAS  Google Scholar 

  38. Tarkanyi F, Szelecsenyi F, Kopecky P, Molnar T, Ando L, Mikecz P, Toth G, Rydl A (1994) Cross section of proton induced nuclear reaction on enriched Cd-111 and Cd-112 for the production of In-111 for use in nuclear medicine. Appl Radiat Isot 45(2):239–249

    Article  CAS  Google Scholar 

  39. Marten M, Schuring A, Scobel W (1985) Preequilibrium neutron emission in Ag-109(He3,xn) and Cd-111(p,xn) reactions. Z Phys A Hadrons Nucl 322:93–103

    CAS  Google Scholar 

  40. Skakun EA, Kljucharev AP, Rakivnenko Yu N, Romanij IA (1975) Excitation functions of (p,n)- and (p,2n)-reactions on cadmium isotopes. Izv Rossiiskoi Akademii Nauk Ser Fiz 39:24

    Google Scholar 

  41. Otozai K, Kume S, Mito A, Okamura H, Tsujino R, Kanchiku Y, Gotoh H (1966) Excitation functions for the reactions induced by protons on Cd up to 37 MeV. Nucl Phys 80:335–348

    Article  CAS  Google Scholar 

  42. Mahunka I, Ando L, Mikecz P, Tcheltsov AN, Suvorov IA (1996) Iodine-123 production at a small cyclotron for medical use. J Radioanal Nucl Chem 213:135–142

    Article  CAS  Google Scholar 

  43. Scholten B, Qaim SM, Stocklin G (1989) Excitation functions of proton induced nuclear reactions on natural tellurium and enriched Te-123-production of I-123 via the Te-123(p,n)I-123-process at a low-energy cyclotron. Appl Radiat Isot 40(2):127–132

    Article  CAS  Google Scholar 

  44. Acerbi E, Birattari C, Castiglioni M, Resmini F, Villa M (1975) Production of 123-I for medical purposes at the Milan AVF cyclotron. Appl Radiat Isot 26(12):741–747

    Article  CAS  Google Scholar 

  45. Scholten B, Kovacs Z, Tarkanyi F, Qaim SM (1995) Excitation functions of Te-124(p,xn)I-123,124 reactions from 6 to 31 MeV with special reference to the production of I-124 at a small cyclotron. Appl Radiat Isot 46(4):255–259

    Article  CAS  Google Scholar 

  46. Takacs S, Tarkanyi F, Hermanne A, Paviotti De Corcuera R (2003) Validation and upgrade of the recommended cross section data of charged particle reactions used for production PET radioisotopes. Nucl Instrum Methods Phys Res Sect B 211:169

    Article  CAS  Google Scholar 

  47. Hermanne A, Tarkanyi F, Takacs S, Adam Rebeles R, Ignatyuk A, Spellerberg S, Schweikert R (2011) Limitation of the long-lived 121Te contaminant in production of 123I through the 124Xe(p,x) route. Appl Radiat Isot 69(2):358–368

    Article  CAS  Google Scholar 

  48. Tarkanyi F, Qaim SM, Stocklin G, Sajjad M, Lambrect RM, Schweickert H (1991) Excitation function of (p,2n) and (p,pn) reactions and differential and integral yield of I-123 in proton induced nuclear reactions on highly enriched Xe-124. Appl Radiat and Isot 42(3):221–228

    Article  CAS  Google Scholar 

  49. Kurenkov NV, Malinin AB, Sebyakin AA, Venikov NI (1989) Excitation functions of proton-induced nuclear reactions on Xe-124. Production of I-123. J Radioanal Nucl Chem 135:39–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Aytekin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aytekin, H., Artun, O. & Baldık, R. Cross-section calculations of proton induced (p,n) and (p,2n) reactions for production of diagnostic 67Ga, 81Rb, 111In, 123,124I, 123Cs and 123Xe radioisotopes. J Radioanal Nucl Chem 298, 95–103 (2013). https://doi.org/10.1007/s10967-013-2478-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2478-y

Keywords

  • Equilibrium and pre-equilibrium models
  • Excitation functions
  • Diagnostic radionuclides