Skip to main content
Log in

Gamma dose rate due to natural and manmade radiation sources from a nuclear facility in Mexico

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The environmental external gamma dose rate has been determined at the Mexican Nuclear Research Centre and surrounding communities, located in a forest area. Outdoor direct measurements of external gamma exposure and absorbed dose rates in air were performed using passive integrating thermoluminescent dosimeters. Radiological measurements were also carried out with a portable high pressure ionization chamber. The gamma dose rate was evaluated from data obtained along 10 years measurements. The activity concentrations of 40K, 226Ra, 232Th, 137Cs, and 235U in surface soil samples at sampling sites are also presented. The radionuclide activity concentrations were determined by low background gamma spectrometry with hyper-pure germanium detectors. A site specific lineal model to describe the relationship between the external gamma dose rate and the 226Ra concentration values in the soil is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. UNSCEAR (2000) Sources and effects of ionizing radiation. Report to the general assembly, with scientific annexes, vol 1. United Nations Scientific Committee on Effects of Atomic Radiation, New York

    Google Scholar 

  2. UNSCEAR (2008) Sources and effects of ionizing radiation, vol 1 2010. United Nations Scientific Committee on Effects of Atomic Radiation, United Nations Publication, New York

    Google Scholar 

  3. Singh S, Rani A, Mahajan RK (2005) 226Ra, 232Th and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiat Meas 39:431–439

    Article  CAS  Google Scholar 

  4. Gaso MI, Segovia N, Morton O, Cervantes ML, Godine L, Peña P, Acosta E (2000) 137Cs and relationships with major and trace elements in edible mushrooms from Mexico. Sci Total Environ 262:73–89

    Article  CAS  Google Scholar 

  5. Gaso MI, Segovia N, Gonzalez PR, Azorin J (2004) Effective additional gamma dose for general population and workers from a Mexican radioactive waste site. Pak J Biol Sci 7:2155–2162

    Article  Google Scholar 

  6. Segovia N, Gaso MI, Alvarado E, Peña P, Morton O, Armienta MA, Reyes AV (2003) Environmental radioactivity studies in the soil of a coniferous forest. Radiat Meas 36:525–528

    Article  CAS  Google Scholar 

  7. Segovia N, Gaso MI, Armienta MA (2007) Environmental radon studies in Mexico. Environ Geochem Health 29:143–153

    Article  CAS  Google Scholar 

  8. Espinosa G, Golzarri JI, Bogard J, Gaso I, Ponciano G, Mena M, Segovia N (2008) Indoor radon measurements in México City. Radiat Meas 43:S431–S434

    Article  CAS  Google Scholar 

  9. Espinosa G, Golzarri JI, Castaño VM, Gaso I, Mena M, Segovia N (2010) Measurement of the energy spectrum of 252Cf fission fragments using nuclear track detectors and digital image processing. Rev Mex Fís S 56:40–43

    CAS  Google Scholar 

  10. Nagaoka K, Hiraide I, Sato K, Nakamura T (2009) Nationwide measurements of cosmic-ray dose rates throughout Japan. Radiat Prot Dosimetry 132:365–374

    Article  Google Scholar 

  11. Poje M, Vukovic B, Radolic V, Miklavcic I, Faj D, Pajtler MV, Planinic J (2012) Mapping of cosmic radiation dose in Croatia. J Environ Radioact 103:30–33

    Article  CAS  Google Scholar 

  12. Segovia N, Gaso M, Tejera A, Tamez E (1989) Environmental radioactivity survey in site studies. J Radioanal Nucl Chem A 132:339–348

    Article  CAS  Google Scholar 

  13. Salazar S, Alvarez C, Silva HA, Dorantes C, Gaso MI, Segovia N, Perez I (1994) Radioactivity in air around nuclear facilities in Mexico. Environ Int 20:747–756

    Article  CAS  Google Scholar 

  14. Ferrari L (2004) Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology 32:77–80

    Article  CAS  Google Scholar 

  15. Azorin J, Gutierrez A (1989) Preparation and performance of a CaSO4:Dy, Tm thermoluminescent phosphor for long-term gamma measurements. Health Phys 56:551–559

    CAS  Google Scholar 

  16. Gonzalez PR, Furetta C, Calvo BE, Gaso MI, Cruz-Zaragoza E (2007) Dosimetric characterization of a new preparation of BaSO4 activated by Eu ions. Nucl Instrum Meth Phys Res B 260:685–692

    Article  CAS  Google Scholar 

  17. IAEA (2003) Guidelines for radioelement mapping using gamma ray spectrometry data. IAEA-TECDOC-1363, Vienna, p 173

    Google Scholar 

  18. Chung H, Gonzalez P, Ramírez A, Scaf P, Lee I (2010) Rethinking about chronology of Chichen Itza by thermoluminescence dating of volcanic glass. Mediterr Archaeol Archaeom 10:115–120

    Google Scholar 

  19. Tosheva Z, Stoyanova K, Nikolchev L (2002) Comparison of different methods for uranium determination in water. INSINUME: In Situ Nuclear Metrology as a Tool for Radioecology. Symposium No. 1, Fleurus, Belgique, 243 p

  20. Sivakumar R, Selvasekarapandian S, Mugunthamanikandan N, Raghunath VM (2002) Indoor gamma dose measurements in Gudalore (India) using TLD. Appl Radiat Isot 56:883–889

    Article  CAS  Google Scholar 

  21. Hosoda M, Sorimachi A, Ynsuoka Y, Ishikawa T, Sahoo SK, Furukawa M, Hassan NM, Tokonami S, Uchida S (2009) Simultaneous measurements of radon and thoron exhalation rates and comparison with values calculated by UNSCEAR equation. J Radiat Res 50:333–343

    Article  CAS  Google Scholar 

  22. Losana MC, Magnoni M, Righino F (2001) Comparison of different methods for the assessment of the environmental gamma dose. Radiat Prot Dosimetry 97:333–336

    Article  CAS  Google Scholar 

  23. Vega Carrillo HR, Manzanares Acuña E (2004) Background neutron spectrum at 2420 m above sea level. Nucl Instrum Meth Phys Res A 524:146–151

    Article  CAS  Google Scholar 

  24. Kowatari M, Nagaoka K, Satoh S, Ohta Y, Abukawa J (2005) Altitude variation of cosmic-ray neutron energy spectrum and ambient dose equivalent at Mt. Fuji in Japan. J Nucl Sci Technol 42:495–502

    Article  CAS  Google Scholar 

  25. Florek M, Masarik J, Szarka I, Nikodemova D, Hrabovcova A (1996) Natural neutron fluence rate and the equivalent dose in localities with different elevation and latitude. Radiat Prot Dosimetry 67:187–192

    Article  CAS  Google Scholar 

  26. Grzegorz A, Martin A (1998) Dose rate conversion factors: update. Ancient TL 16:37–50

    Google Scholar 

  27. Choppi G, Liljenzin JO, Rydberg J (2002) Radiochemistry and nuclear chemistry, 3rd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  28. Beck HL, DeCampo J, Gogolak C (1972) In situ Ge (Li) and NaI (Tl) Gamma-ray spectrometry. USAEC, Report HASL-258, 75 p

  29. Miller KM (1992) Measurements of external radiation in United States Dwellings. Radiat Prot Dosimetry 45:535–539

    CAS  Google Scholar 

  30. Fisher RB, Easty DB (2003) Results of surveys at United States pulp and paper mills for the presence of scales and precipitates containing Naturally Ocurring Radioactive Material (NORM). Health Phys 84:518–525

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge E. Quintero, F. Montes, G. Valentin, and R. Benitez for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Gaso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaso, M.I., Segovia, N., González, P.R. et al. Gamma dose rate due to natural and manmade radiation sources from a nuclear facility in Mexico. J Radioanal Nucl Chem 296, 1213–1218 (2013). https://doi.org/10.1007/s10967-012-2386-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2386-6

Keywords

Navigation