Skip to main content
Log in

Evolution and solar modulation of 7Be during the solar cycle 23

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The modulation of 7Be-aerosols concentration due to solar activity during the cycle 23 is studied in the present research. For that purpose, was analyzed the differences in the long-term variation of geomagnetic and solar activity to assess the physical effects over the evolution of 7Be during the period 1996–2010. Furthermore, exploratory data analysis was applied to understand better the behavior of 7Be-aerosols in the surface atmosphere. This study shows that there is an inverse relationship among 7Be measured in the near ground air and solar activity. The modulation of 7Be-aerosols during the cycle 23 was divided in two steps. In the first stage, ascending phase, 1996–2002, the solar activity played an important role in the production rate of 7Be, r = −0.75. However, during the descending phase, 2002–2009, the role of the solar activity was secondary, r = −0.30, allowing that 7Be-aerosols reached the maximum concentration, 9.33 mBq m−3 in August-09 when the solar activity was zero. Moreover, the remaining solar activity after the end of the ascending phase and the last important solar storm (December-06) caused the slowdown of 7Be production rate from 2001 to 2004 and the rupture of the seasonal behavior of 7Be in 2007, respectively. Finally, this research highlight the necessity to take into account the solar cycle phase, ascending or descending, to model studies of atmospheric process with 7Be as tracer since the contribution of the variables studied are so different in these stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Colin B (1997) Environmental Chemistry. W.H. Freeman and Company, New York

    Google Scholar 

  2. Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, Van Geel B, White W (2010) Solar influences on climate. Rev Geophys 48:RG4001

    Article  Google Scholar 

  3. Ehmann WD, DE Vance (1991) Radiochemistry and nuclear methods of analysis. Wiley, New York

    Google Scholar 

  4. Chowdhury P, Dwivedi BN, Ray PC (2011) Solar modulation of galactic cosmic rays during 19–23 solar cycles. New Astron 16:430–438

    Article  CAS  Google Scholar 

  5. United Nations Scientific Committee on the Effects of Ionizing Radiation, UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations, New York

    Google Scholar 

  6. Van Allen JA (2000) On the modulation of galactic cosmic ray intensity during solar activity cycles 19, 20, 21, 22 and early 23. Geophys Res Lett 27(16):2453–2456

    Article  Google Scholar 

  7. Ozgüc A, Atac T (2003) Effects of hysteresis in solar cycle variations between flare index and cosmic rays. New Astron 8:745–750

    Article  Google Scholar 

  8. Usoskin IG, Alanko-Huotari K, Kovaltsov GA, Mursula K (2005) Heliospheric modulation of cosmic rays: monthly reconstruction for 1951–2004. J Geophys Res 110(A12):A12108

    Article  Google Scholar 

  9. Alanko-Huotari K, Mursula K, Usoskin IG, Kovaltsov GA (2006) Global heliospheric parameters and cosmic-ray modulation: an empirical relation for the last decades. Sol Phys 238(2):391–404

    Article  Google Scholar 

  10. Mavromichalaki H, Paouris E, Karalidi T (2007) Cosmic-ray modulation: an empirical relation with solar and heliospheric parameters. Sol Phys 245(2):369–390

    Article  CAS  Google Scholar 

  11. Singh M, Singh YP, Badruddin (2008) Solar modulation of galactic cosmic rays during the last five solar cycles. J Atmos Sol-TerrPhy 70(1):169–183

    Article  Google Scholar 

  12. Masarik J, Beer J (1999) Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J Geophys Res 104(D10):12099–12111

    Article  CAS  Google Scholar 

  13. Feely HW, Larsen RJ, Sanderson CG (1989) Factors that cause seasonal variations in Beryllium-7 concentrations in surface air. J Environ Radioact 9:223–249

    Article  CAS  Google Scholar 

  14. Aldahan A, Hedfors J, Possnert G, Kulan A, Berggren A, Söderström C (2008) Atmospheric impact on beryllium isotopes as solar activity proxy. Geophys Res Lett 35:L21812

    Article  Google Scholar 

  15. Lal D, Peters B (1962) Cosmic ray produced isotopes and their application to problems in geophysics. In: Wilson J, Wouthuysen S (eds) Progress in Elementary Particle and Cosmic Ray Physics, vol 6, Amsterdam, pp 77–243

  16. Brost RA, Feichter J, Heimann M (1991) Three-dimensional simulation of 7Be in a global climate model. J Geophys Res 96:22423–22445

    Article  Google Scholar 

  17. Vecchi R, Valli G (1997) 7Be in surface air a natural atmospheric tracer. J Aerosol Sci 28:895–900

    Article  CAS  Google Scholar 

  18. Koch DM, Jacob DJ, Graustein WC (1996) Vertical transport of tropospheric aerosols as indicated by 7Be and 210Pb in a chemical tracer model. J Geophys Res 101:18651–18666

    Article  CAS  Google Scholar 

  19. Liu H, Jacob DJ, Bey I, Yantosca RM (2001) Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. J Geophys Res 106:12109–12128

    Article  CAS  Google Scholar 

  20. Jordan CE, Dibb JE, Finkel RC (2003) 10Be/7Be tracer of atmospheric transport and stratosphere troposphere Exchange. J Geophys Res 108(D8):4234

    Article  Google Scholar 

  21. Giuliana T, Oran R (2004) White solar cycle 23: an anomalous cycle? Astrophys J 609:1140–1152

    Article  Google Scholar 

  22. Azahra M, Camacho-Garcia A, Gonzalez-Gomez C, Lopez-Penalver JJ, El Bardouni T (2003) Seasonal 7Be concentrations in near-surface air of Granada (Spain) in the period 1993–2001. Appl Radiat Isot 59:159–164

    Article  CAS  Google Scholar 

  23. Piñero García F, Ferro García MA, Azahra M (2012) 7Be behavior in the atmosphere of the city of Granada January 2005 to December 2009. Atmos Environ 47:84–91

    Article  Google Scholar 

  24. Falayi EO, Rabiu BA (2012) Dependence of time derivative of horizontal geomagnetic field on sunspot number and aa index. Acta Geophys. doi:10.2478/s11600-012-0048-2

    Google Scholar 

  25. Menvielle M, Bethelier A (1991) The K-derived planetary indices: description and availability. Rev Geophys 29:415–432

    Article  Google Scholar 

  26. Piñero García F, Ferro García MA, Drozdzak J, Ruiz-Samblás C (2012) Exploratory data analysis in the study of 7Be present in atmospheric aerosols. Environ Sci Pollut Res 19:3317–3326

    Article  Google Scholar 

  27. Ruiz-Samblás C, Cuadros-Rodríguez L, González-Casado A, De Paula Rodríguez García F, De La Mata-Espinosa P, Bosque-Sendra JM (2011) Multivariate analysis of HT/GC-(IT) MS chromatographic profiles of triacylglycerol for classification of olive oil varieties. Anal Bioanal Chem 399:2093–2103

    Article  Google Scholar 

  28. Yeomans KA, Golder PA (1982) The Guttman-Kaiser criterion as a predictor of the number of common factors. J Royal Stat Soc 31(3):221–229

    Google Scholar 

  29. Miller NJ, Miller JC (2005) Statistic and chemometrics for analytical chemistry, 5th edn. Pearson Education Limited, Harlow

    Google Scholar 

  30. Brace N, Kemp R, Snelgar R (2006) Multiple Regression. In: Palgrave McMillan (ed) SPSS for Psychologist, 3rd edn., Chap 8. New York, pp 227–245

  31. Baeza A, Delrio LM, Jiménez A, Miró C, Paniagua JM, Rufo M (1996) Analysis of the temporal evolution of atmospheric 7Be as a vector of the behaviour of other radionuclides in the atmosphere. J Radioanal Nucl Chem 207(2):331–344

    Article  CAS  Google Scholar 

  32. Dueñas C, Fernández MC, Liger E, Carretero J (1999) Gross alpha, gross beta activities and 7Be concentrations in surface air: analysis of their variations and prediction model. Atmos Environ 33:3705–3715

    Article  Google Scholar 

  33. Doering C, Akber R (2008) Describing the annual cyclic behaviour of 7Be concentrations in surface air in Oceania. J Environ Radioact 99:1703–1707

    Article  CAS  Google Scholar 

  34. Valles I, Camacho A, Ortega X, Serrano I, Blázquez S, Peréz S (2009) Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain). J Environ Radioact 100:102–107

    Article  CAS  Google Scholar 

  35. Al-Azmi D, Sayed AM, Yatim HA (2001) Variations in 7Be concentrations in the atmosphere of Kuwait during period 1994 to 1998. Appl Radiat Isot 55:413–417

    Article  CAS  Google Scholar 

  36. Kulan A, Aldahan A, Possnert G, Vintersved I (2006) Distribution of 7Be in surface air of Europe. Atmos Environ 40:3865–3868

    Google Scholar 

  37. Rouillard A, Lockwood M (2004) Oscillations in the open solar magnetic flux with period 1.68 years: imprint on galactic cosmic rays and implications for heliospheric shielding. Ann Geophys 22:4381–4395

    Article  Google Scholar 

  38. Chae J-S, Byun J-I, Yim SA, Choi H-Y, Yun J-Y (2011) 7Be in ground level air in Daejeon, Korea. Radiat Prot Dosim 146:334–337

    Article  CAS  Google Scholar 

  39. Gonzalez WD, Gonzalez ALC, Tsurutani BT (1990) Dual peak cycle distribution of intense geomagnetic storms. Planet Space Sci 38:181–187

    Article  Google Scholar 

  40. Gorney DJ (1990) Solar cycle effects on the near-Earth space environment. Rev Geophys 28:315–336

    Article  Google Scholar 

  41. Schreiber H (1981) Correlation of geomagnetic activity indices Ap with the solar wind speed and the southward interplanetary magnetic field. J Geophys 49:169–175

    Google Scholar 

  42. Prestes A, Rigozo NR, Echer E, Vieira LEA (2006) Spectral analysis of sunspot number and geomagnetic indices (1868–2001). J Atmos Sol-Terr Phy 68:182–190

    Article  Google Scholar 

  43. Echer E, Gonzalez ALC, Gonzalez A, Prestes LEA, Vieira A, Dal Lago FL, NJ Schuch Guarnieri (2004) Long-term correlation between solar and geomagnetic activity. J Atmos Sol-Terr Phy 66:1019–1025

    Article  Google Scholar 

  44. Richardson IG, Cliver EW, Cane HV (2000) Sources of geomagnetic activity over the solar cycle: relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J Geophys Res 105:18203–18213

    Article  CAS  Google Scholar 

  45. Satoshi K, Hirohisa S, Shuichi G, Fuyuki T (2009) Temporal variation of 7Be concentrations in atmosphere for 8 y from 2000 at Yamagata, Japan: solar influence on the 7Be time series. J Environ Radioact 100:515–521

    Article  Google Scholar 

  46. Mewaldt RA, Davis AJ, Lave KA, Leske RA, Stone EC, Wiedenbeck ME, Binns WR, Christian ER, Cummings AC, Nolfo GA, Israel MH, Labrador AW, Von Rosenvinge TT (2010) Record-setting cosmic-ray intensities in 2009 and 2010. Astrophys J Lett. doi:10.1088/2041-8205/723/1/L1

    Google Scholar 

  47. Yu KN, Lee LYL (2002) Measurements of atmospheric 7Be properties using high-efficiency gamma spectroscopy. Appl Radiat Isot 57:941–946

    Article  CAS  Google Scholar 

  48. Jiwen L, Starovoitova NV, Wells DP (2013) Long-term variations in the surface air 7Be concentration and climatic changes. J Environ Radioact 116:42–47

    Article  CAS  Google Scholar 

  49. Dueñas C, Fernandez MC, Cañete S, Pérez M (2009) 7Be to 210Pb concentration ratio in ground level air in Málaga (36.7°N, 4.5°W). Atmos Environ 92:49–57

    Google Scholar 

  50. Ioannidou A, Kotsopoulou E, Papastefanou C (2011) 7Be in the lower atmosphere at a mid-latitude (40ºN) during the year 2009 of a particular minimum of solar activity. J Radioanal Nucl Chem 289:395–400

    Article  CAS  Google Scholar 

  51. Cannizzaro F, Graco G, Raneli M, Spitale MC, Tomarchio E (2004) Concentration measurements of 7Be at ground level air at Palermop, Italy-comparison with solar activity over a period of 21 years. J Environ Radioact 72:259–271

    Article  CAS  Google Scholar 

  52. Maris G, Maris O (2011) Fast solar wind and geomagnetic variability during the descendant phase of the 11-yr solar cycle. AIP conf proc 1356:177–191

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the providers of the data of solar activity (SIDC, Brussels), cosmic rays (Jungfraujoch 18-IGY neutron monitor, Swise) geomagnetic index (NOAA, USA) and meteorological data (AEMET, Spain) used in this study. Furthermore, we wish to thank the Spanish Nuclear Safety Council (CSN) for the kind support given to the Radiochemistry and Environmental Radiology Laboratory of the University of Granada since 1993. To finish, we are grateful to all the laboratory personnel that during these years have worked in the acquisition of the experimental data of 7Be used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ferro-García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piñero-García, F., Ferro-García, M.A. Evolution and solar modulation of 7Be during the solar cycle 23. J Radioanal Nucl Chem 296, 1193–1204 (2013). https://doi.org/10.1007/s10967-012-2373-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2373-y

Keywords

Navigation