Skip to main content
Log in

Application of NKF-6 zeolite for the removal of U(VI) from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To better understand the application of NKF-6 zeolite as an adsorbent for the removal of U(VI) from radionuclides and heavy metal ions polluted water, herein, NKF-6 zeolite was employed to remove U(VI) at different experimental conditions. The influence of solid/liquid ratio, contact time, pH, ionic strength, humic substances and temperature on sorption of U(VI) to NKF-6 zeolite was investigated using batch technique under ambient conditions. The experimental results demonstrated that the sorption of U(VI) on NKF-6 zeolite was strongly dependent on pH. The sorption property of U(VI) was influenced by ionic strength at pH < 7.0, whereas was independent of ionic strength at pH > 7.0. The presence of fulvic acid or humic acid promoted the sorption of U(VI) on NKF-6 zeolite at low pH values while restrained the sorption at high pH values. The thermodynamic parameters (i.e., ΔS 0, ΔH 0, and ΔG 0) calculated from the temperature-dependent sorption isotherms demonstrated that the sorption process of U(VI) on NKF-6 zeolite was endothermic and spontaneous. At low pH values, the sorption of U(VI) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on NKF-6 zeolite surfaces, while inner-sphere surface complexation was the main sorption mechanism at high pH values. From the experimental results, one can conclude that NKF-6 zeolite can be used as a potential adsorbent for the preconcentration and solidification of U(VI) from large volumes of aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yusan SD, Akyil S (2008) J Hazard Mater 160:395–3883

    Article  Google Scholar 

  2. Zhao DL, Yang SB, Chen SH, Guo ZQ, Yang X (2003) J Radioanal Nucl Chem 256:45–51

    Article  Google Scholar 

  3. Camacho LM, Deng S, Parra RR (2010) J Hazard Mater 175:393–398

    Article  CAS  Google Scholar 

  4. Hyun SP, Cho YH, Hahn PS, Kim SJ (2001) J Radioanal Nucl Chem 250:55–62

    Article  CAS  Google Scholar 

  5. Wieland E, Macé N, Dähn R, Kunz D, Tits J (2010) J Radioanal Nucl Chem 286:793–800

    Article  CAS  Google Scholar 

  6. Faghihian H, Rahi D, Mostajaboddavati M (2012) J Radioanal Nucl Chem 292:711–717

    Article  CAS  Google Scholar 

  7. Trivedi P, Axe L (2001) Environ Sci Technol 35:1779–1784

    Article  CAS  Google Scholar 

  8. Zhang SW, Guo ZQ, Xu JZ, Niu HH, Chen ZS, Xu JZ (2011) J Radioanal Nucl Chem 288:121–130

    Article  CAS  Google Scholar 

  9. Wang XK, Chen CL, Du JZ, Tan XL, Xu D, Yu SM (2005) Environ Sci Technol 39:7084–7088

    Article  CAS  Google Scholar 

  10. Hu BW, Cheng W, Zhang H, Sheng GD (2010) J Radioanal Nucl Chem 285:389–398

    Article  CAS  Google Scholar 

  11. Liu ZJ, Chen L, Dong YH, Zhang ZC (2011) J Radioanal Nucl Chem 289:851–859

    Article  CAS  Google Scholar 

  12. An HK, Park BY, Kim DS (2001) Water Res 35:3551–3556

    Article  CAS  Google Scholar 

  13. Morsy AMA, Hussein AEM (2011) J Radioanal Nucl Chem 288:341–346

    Article  CAS  Google Scholar 

  14. Wang XK, Chen CL, Hu WP, Ding AP, Xu D, Zhou X (2005) Environ Sci Technol 39:2856–2860

    Article  CAS  Google Scholar 

  15. Chen CL, Wang XK, Nagatsu M (2009) Environ Sci Technol 43:2362–2367

    Article  CAS  Google Scholar 

  16. Sheng GD, Li JX, Shao DD, Hu J, Chen CL, Chen YX, Wang XK (2010) J Hazard Mater 178:333–340

    Article  CAS  Google Scholar 

  17. Yang ST, Li JX, Shao DD, Hu J, Wang XK (2009) J Hazard Mater 166:109–116

    Article  CAS  Google Scholar 

  18. Yang ST, Guo ZQ, Sheng GD, Wang XK (2012) Sci Total Environ 420:214–221

    Article  CAS  Google Scholar 

  19. Tan XL, Wang XK, Geckeis H, Rabung TH (2008) Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  20. Yang ST, Sheng GD, Tan XL, Hu J, Du JZ, Montavon G, Wang XK (2011) Geochim Cosmochim Acta 75:6520–6534

    Article  CAS  Google Scholar 

  21. Yang ST, Sheng GD, Guo ZQ, Tan XL, Xu JZ, Wang XK (2012) Sci China Chem 55:632–642

    Article  CAS  Google Scholar 

  22. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Environ Sci Technol 43:5776–5782

    Article  CAS  Google Scholar 

  23. Fan QH, Li P, Chen YF, Wu WS (2011) J Hazard Mater 192:1851–1859

    Article  CAS  Google Scholar 

  24. Sheng GD, Wang SW, Hu J, Lu Y, Li JX, Dong YH, Wang XK (2009) Colloids Surf A 339:159–166

    Article  CAS  Google Scholar 

  25. Sheng GD, Yang ST, Sheng J, Hu J, Tan XL, Wang XK (2011) Environ Sci Technol 45:7718–7726

    Article  CAS  Google Scholar 

  26. Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK (2009) Microporous Mesoporous Mater 123:1–9

    Article  CAS  Google Scholar 

  27. Shao DD, Wang XK, Fan QH (2009) Microporous Mesoporous Mater 117:243–248

    Article  CAS  Google Scholar 

  28. Faghihian H, Peyvandi S (2012) J Radioanal Nucl Chem 293:463–468

    Article  CAS  Google Scholar 

  29. Wang P, Shen BJ, Gao JS (2007) Catal Today 125:155–162

    Article  CAS  Google Scholar 

  30. Shanableh A, Kharabsheh A (1996) J Hazard Mater 45:207–217

    Article  CAS  Google Scholar 

  31. Ghiaci M, Kia R, Abbaspur A, Seyedeyn-Azad F (2004) Sep Purif Technol 40:285–295

    Article  CAS  Google Scholar 

  32. Mori K, Imaoka S, Nishio S, Nishiyama Y, Nishiyama N, Yamashita H (2007) Microporous Mesoporous Mater 101:288–295

    Article  CAS  Google Scholar 

  33. Chutia P, Kato S, Kojima T, Satokawa S (2009) J Hazard Mater 162:204–211

    Article  CAS  Google Scholar 

  34. Tao ZY, Zhang J, Zhai J (1999) Anal Chim Acta 395:199–203

    Article  CAS  Google Scholar 

  35. Zhang J, Zhai JJ, Zhao FZ, Tao ZY (1999) Anal Chim Acta 378:177–182

    Article  CAS  Google Scholar 

  36. Chin YP, Alken G, O’Loughlin E (1994) Environ Sci Technol 28:1853–1858

    Article  CAS  Google Scholar 

  37. Treacy MMJ, Higgins JB (2001) Collection of simulated XRD power patterns of zeolites. Elsevier, Amsterdam

    Google Scholar 

  38. Zhang H, Yu X, Chen L, Jing Y, Ge Z (2010) J Environ Radioact 101:1061–1069

    Article  CAS  Google Scholar 

  39. Huang JH, Liu YF, Wang XG (2008) J Hazard Mater 160:382–387

    Article  CAS  Google Scholar 

  40. Guo ZQ, Xu DP, Zhao DL, Zhang SW, Xu JZ (2011) J Radioanal Nucl Chem 287:505–512

    Article  CAS  Google Scholar 

  41. Ho YS, Wase DAJ, Forster CF (1996) Environ Technol 17:71–77

    Article  CAS  Google Scholar 

  42. Hu J, Xu D, Chen L, Wang XK (2009) J Radioanal Nucl Chem 279:701–708

    Article  CAS  Google Scholar 

  43. Guo ZQ, Li Y, Zhang SW, Niu HH, Chen ZS, Xu JZ (2011) J Hazard Mater 192:168–175

    Article  CAS  Google Scholar 

  44. Yang ST, Zhao DL, Zhang H, Lu SS, Chen L, Yu XJ (2010) J Hazard Mater 183:632–640

    Article  CAS  Google Scholar 

  45. Bhattacharyya KG, Gupta SS (2008) Colloids Surf A 317:71–79

    Article  CAS  Google Scholar 

  46. Sheng GD, Yang ST, Sheng J, Zhao DD, Wang XK (2011) Chem Eng J 168:178–182

    Article  CAS  Google Scholar 

  47. Yang SB, Hu J, Chen CL, Shao DD, Wang XK (2011) Environ Sci Technol 45:3621–3627

    Article  CAS  Google Scholar 

  48. Ren XM, Wang SW, Yang ST, Li JX (2010) J Radioanal Nucl Chem 283:253–259

    Article  CAS  Google Scholar 

  49. Yang ST, Li JX, Lu Y, Chen YX, Wang XK (2009) Appl Radiat Isot 67:1600–1608

    Article  CAS  Google Scholar 

  50. Zhu WB, Liu ZJ, Chen L, Dong YH (2011) J Radioanal Nucl Chem 289:781–788

    Article  CAS  Google Scholar 

  51. Zhao DL, Wang XB, Yang ST, Guo ZQ, Sheng GD (2012) J Environ Radioact 103:20–29

    Article  CAS  Google Scholar 

  52. Strathmann TJ, Myneni SCB (2005) Environ Sci Technol 39:4027–4034

    Article  CAS  Google Scholar 

  53. Ghosh S, Mashayekhi H, Pan B, Bhowmik P, Xing BS (2008) Langmuir 24:12385–12391

    Article  CAS  Google Scholar 

  54. Yang K, Xing B (2009) Environ Pollut 157:1095–1100

    Article  CAS  Google Scholar 

  55. Takahashi Y, Minai Y, Ambe S, Makide Y, Ambe F (1999) Geochim Cosmochim Acta 63:815–836

    Article  CAS  Google Scholar 

  56. Montavon G, Markai S, Andres Y, Grambow B (2002) Environ Sci Technol 36:3303–3309

    Article  CAS  Google Scholar 

  57. Zhang LP, Zhang H, Ge ZW, Yu XJ (2011) J Radioanal Nucl Chem 288:537–546

    Article  CAS  Google Scholar 

  58. Sheng GD, Hu J, Jin H, Yang ST, Ren XM, Li JX, Chen YX, Wang XK (2010) Radiochim Acta 98:291–299

    Article  CAS  Google Scholar 

  59. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  60. Zhao GX, Jiang L, He YD, Li JX, Dong HL, Wang XK, Hu WP (2011) Adv Mater 23:3959–3963

    Article  CAS  Google Scholar 

  61. Zuo LM, Yu SM, Zhou H, Tian X, Jiang J (2011) J Radioanal Nucl Chem 288:379–387

    Article  CAS  Google Scholar 

  62. Bhattacharyya KG, Gupta SS (2008) Chem Eng J 136:1–13

    Article  CAS  Google Scholar 

  63. Kamei-Ishikawa N, Nakamaru Y, Tagami K, Uchida S (2008) J Environ Radioact 99:993–1002

    Article  CAS  Google Scholar 

  64. Tahir SS, Rauf N (2003) J Chem Thermodyn 35:2003–2009

    Article  CAS  Google Scholar 

  65. Saleem N, Bhatti HN (2011) Bioresources 6:2522–2538

    CAS  Google Scholar 

  66. Joseph C, Schmeide K, Sachs S, Brendler V, Geipel G, Bernhard G (2011) Chem Geol 284:240–250

    Article  CAS  Google Scholar 

  67. Guerra DL, Leidens VL, Viana RR, Airoldi C (2010) J Hazard Mater 180:683–692

    Article  CAS  Google Scholar 

  68. Sun YB, Yang ST, Sheng GD, Guo ZQ, Tan XL, Xu JZ, Wang XK (2011) Sep Purif Technol 83:196–203

    Article  Google Scholar 

  69. Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) J Phys Chem B 113:860–864

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaohui He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zong, P., Wang, H., Pan, H. et al. Application of NKF-6 zeolite for the removal of U(VI) from aqueous solution. J Radioanal Nucl Chem 295, 1969–1979 (2013). https://doi.org/10.1007/s10967-012-2308-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2308-7

Keywords

Navigation