Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 3, pp 1957–1967 | Cite as

Pu and Am sorption to the Baltic Sea bottom sediments

  • G. LujanienėEmail author
  • P. Beneš
  • K. Štamberg
  • K. Jokšas
  • I. Kulakauskaitė
Article

Abstract

Sorption of Am and Pu isotopes to bottom sediments of the Baltic Sea has been studied under natural and laboratory conditions. Data obtained from sequential extraction, sorption of Am(III), Pu(IV) and Pu(V) as well as oxidation state distribution experiments have shown that Pu(V) sorption mechanism includes a very fast Pu(V) reduction (reaction rate ≤ 2.33 × 10−3 s−1) to Pu(IV) by humic substances and/or by Fe(II) to Pu(IV) and partly to Pu(III). Following reduction Pu isotopes were bound to various components of bottom sediments via ion exchange and surface complexation reactions and a slow incorporation into the crystalline structure of Fe minerals. Kinetics experiments showed that the sorption of Pu(V), Pu(IV) and Am(III) to bottom sediments from natural seawater was controlled by the inert layer diffusion process.

Keywords

Pu(IV) Pu(V) Bottom sediments Seawater Sorption 

Notes

Acknowledgments

The Financial support provided by the Research Council of Lithuania (contract No. MIP-080/2012) is acknowledged. The authors thank students of the Chemical Department of Vilnius University, participating in the experiments, for technical assistance.

References

  1. 1.
    Holm E (1995) Plutonium in the Baltic Sea. Appl Radiat Isot 46:1225–1229CrossRefGoogle Scholar
  2. 2.
    Skwarzec B, Jahnz-Bielawska A, Struminska-Parulska D (2011) The inflow of 238Pu and 239,240Pu from the Vistula River catchment area to the Baltic Sea. J Environ Radioact 102:728–734CrossRefGoogle Scholar
  3. 3.
    Skwarzec B, Struminska DI, Prucnal M (2003) Estimates of 239+240Pu inventories in Gdansk bay and Gdansk basin. J Environ Radioact 70:237–252CrossRefGoogle Scholar
  4. 4.
    Struminska DI, Skwarzec B (2004) Plutonium concentrations in waters from the southern Baltic Sea and their distribution in cod (Gadus morhua) skin and gills. J Environ Radioact 72:355–361CrossRefGoogle Scholar
  5. 5.
    Livingston HD, Povinec PP (2002) A millennium perspective on the contribution of global fallout radionuclides to ocean science. Health Phys 82:656–668CrossRefGoogle Scholar
  6. 6.
    Mattila J, Kankaanpää H, Ilus E (2006) Estimation of recent accumulation rates in the Baltic Sea using artificial radionuclides 137Cs and 239,240Pu as time markers. Boreal Environ Res 11:95–107Google Scholar
  7. 7.
    Suplinska MM (2002) Vertical distribution of 137Cs, 210Pb, 226Ra and 239,240Pu in bottom sediments from the Southern Baltic Sea in the years 1998–2000. Nukleonika 47:45–52Google Scholar
  8. 8.
    Strumińska-Parulska D, Skwarzec B, Pawlukowska M (2012) Plutonium fractionation in southern Baltic Sea sediments. Isot Environ Health St. doi: 10.1080/10256016.2012.683524 Google Scholar
  9. 9.
    Bruesseler KO, Kaplan DI, Dai M, Pike S (2009) Source-dependent and source-independent controls on plutonium oxidation state and colloid associations in groundwater. Environ Sci Technol 43:1322–1328CrossRefGoogle Scholar
  10. 10.
    Silver GL (2001) Plutonium oxidation states in seawater. Appl Radiat Isot 55:589–594CrossRefGoogle Scholar
  11. 11.
    Choppin GR (2006) Actinide speciation in aquatic systems. Mar Chem 99:83–92CrossRefGoogle Scholar
  12. 12.
    Andre C, Choppin GR (2000) Reduction of Pu(V) by humic acid. Radiochim Acta 88:613–616CrossRefGoogle Scholar
  13. 13.
    Choppin GR (2007) Actinide speciation in the environment. J Radioanal Nucl Chem 273:695–703CrossRefGoogle Scholar
  14. 14.
    Foti SC, Freiling EC (1964) The determination of the oxidation states of tracer uranium, neptunium and plutonium in aqueous media. Talanta 11:385–392CrossRefGoogle Scholar
  15. 15.
    Nelson DM, Lovett MB (1978) Oxidation state of plutonium in the Irish Sea. Nature 276:599–601CrossRefGoogle Scholar
  16. 16.
    Bondietti EA, Trabalka JR (1980) Evidence for plutonium (V) in an alkaline freshwater pond. Radiochem Radioanal Lett 42:169–176Google Scholar
  17. 17.
    Kobashi A, Choppin GR, Morse JW (1988) A study of techniques for separating plutonium in different oxidation states. Radiochim Acta 43:211–215Google Scholar
  18. 18.
    Malcolm SJ, Kershaw PJ, Lovett MB, Harvey BR (1990) The interstitial water chemistry of 239,240Pu and 241Am in the sediments of the north-east Irish Sea. Geochim Cosmochim Acta 54:29–35CrossRefGoogle Scholar
  19. 19.
    McMahon CA, Vintro L, Mitchell PI, Dahlgaard H (2000) Oxidation state distribution of plutonium in surface and subsurface waters at Thule, northwest Greenland. Appl Radiat Isot 52:697–703CrossRefGoogle Scholar
  20. 20.
    Bondietti EA, Reynolds SA, (1976) Field and Laboratory observations on plutonium oxidation States. In: BNWL-2117, proceedings of the actinide-sediment reactions. Working meeting. UAS, Seatle, pp 505–530Google Scholar
  21. 21.
    Orlandi KA, Penrose WR, Nelson DM (1986) Pu(V) as the stable form of oxidized plutonium in natural waters. Mar Chem 18:49–57CrossRefGoogle Scholar
  22. 22.
    Choppin GR, Nash KL (1995) Actinide separation science. Radiochim Acta 70(71):225–236Google Scholar
  23. 23.
    Saito A, Choppin GR (1983) Separation of actinides in different oxidation states from neutral solutions by solvent extraction. Anal Chem 55:2454–2457CrossRefGoogle Scholar
  24. 24.
    New MP, Hoffman DC, Roberts KE, Nitsche H, Silva RJ (1994) Comparison of chemical extractions and laser photoacoustic spectroscopy for determination of plutonium species in near-neutral carbonate solutions. Radiochim Acta 66:265–272Google Scholar
  25. 25.
    Choppin GR, Bond AH, Hromadka PM (1997) Redox speciation of plutonium. J Radioanal Nucl Chem 219:203–210CrossRefGoogle Scholar
  26. 26.
    Nitsche H, Lee SC, Gatti RC (1988) Determination of plutonium oxidation states at trace levels pertinent to nuclear waste disposal. J Radioanal Nucl Chem 124:171–185CrossRefGoogle Scholar
  27. 27.
    Nitsche H, Roberts K, Xi R, Prussian T, Becraft K, Al Mahsamid L, Silber HB, Carpenter SA, Gatti RC (1994) Long term plutonium solubility and speciation studies in a synthetic brine. Radiochim Acta 66(67):3–8Google Scholar
  28. 28.
    Coates JT, Fjeld RA, Paulenova A, DeVol T (2001) Evaluation of a rapid technique for measuring actinide oxidation states in a ground water stimulant. J Radioanal Nucl Chem 248:501–506CrossRefGoogle Scholar
  29. 29.
    Röllin S, Eklund B, Spahiu K (2001) Separation of actinides redox species with cation exchange chromatography and its application to the analysis os spent fuel leaching solutions. Radiochim Acta 89:757–763CrossRefGoogle Scholar
  30. 30.
    Kaplan DL, Powell BA, Duff MC, Demirkanli DI, Denham M, Fjeld RA, Molz FI (2007) Influence of sources on plutonium mobility and oxidation state transformations in vadose zone sediments. Environ Sci Technol 41:7417–7423CrossRefGoogle Scholar
  31. 31.
    Sanchez AL, Gastaud J, Holm E, Roos P (2004) Distribution of plutonium oxidation states in Framvaren and Hellvik fjords, Norway. J Environ Radioact 22:205–217CrossRefGoogle Scholar
  32. 32.
    Morgenstern A, Choppin GR (2002) Kinetics of the oxidation of Pu(IV) by manganese dioxide. Radiochim Acta 90:69–79CrossRefGoogle Scholar
  33. 33.
    Powell BA, Fjeld RA, Kaplan DI, Coates JT (2004) Pu(V)O2 + interactions with synthetic magnetite (Fe3O4). Environ Sci Technol 38:6016–6024CrossRefGoogle Scholar
  34. 34.
    Lujanienė G, Jokšas K, Šilobritienė B, Morkūnienė R (2006) Physical and chemical characteristics of 137Cs in the Baltic Sea. Radioact Environ 8:165–179CrossRefGoogle Scholar
  35. 35.
    Lujanienė G, Beneš P, Štamberg K, Jokšas K, Vopalka D, Radžiūtė E, Šilobritienė B, Šapolaitė J (2010) Experimental study and modelling of 137Cs sorption behaviour in the Baltic Sea and the Curonian Lagoon. J Radioanal Nucl Chem 286:361–366CrossRefGoogle Scholar
  36. 36.
    Ščiglo T, Lujanienė G, Šapolaitė J, Radžiūtė E (2010) Effect of natural organic substances on Pu and Am migration in the environment. Radiation interaction with material and its use in technologies: international conference: program and materials. Kaunas University of Technology, Kaunas, pp 197–200Google Scholar
  37. 37.
    Lujanienė G, Beneš P, Štamberg K, Ščiglo T (2012) Kinetics of plutonium and americium sorption to natural clay. J Environ Radioact 108:41–49CrossRefGoogle Scholar
  38. 38.
    Lujanienė G, Beneš P, Štamberg K, Šapolaitė J, Vopalka D, Radžiūtė E, Ščiglo T (2010) Effect of natural clay components on sorption of Cs, Pu and Am by the clay. J Radioanal Nucl Chem 286:353–359CrossRefGoogle Scholar
  39. 39.
    Lujanienė G, Plukis A, Kimtys E, Remeikis V, Jankūnaitė D, Ogorodnikov BI (2002) Study of 137Cs, 90Sr, 239,240Pu, 238Pu and 241Am behavior in the chernobyl soil. J Radioanal Nucl Chem 251:59–68CrossRefGoogle Scholar
  40. 40.
    Lujanienė G, Motiejūnas S, Šapolaitė J (2007) Sorption of Cs, Pu, Am on clay minerals. J Radioanal Nucl Chem 274:345–353CrossRefGoogle Scholar
  41. 41.
    Lovett MB, Nelson DM (1981) Determination of some oxidation states of plutonium in sea water and associated particulate matter. Techniques for identifying transuranic speciation in aquatic environments. In: Proceedings of TCM. IAEA, ViennaGoogle Scholar
  42. 42.
    Bertrand PA, Choppin GR (1982) Separation of actinides in different oxidation states by solvent extraction. Radiochim Acta 31:135–137Google Scholar
  43. 43.
    Outola I, Inn K, Ford R, Markham S, Outola P (2009) Optimizing standard sequential extraction protocol with lake and ocean sediments. J Radioanal Nucl Chem 282:321–327CrossRefGoogle Scholar
  44. 44.
    Miller WP, Martens DC, Zelazny LW, Kornegay ET (1986) Forms of solid phase copper in copper-enriched swine manure. J Environ Qual 15:69–72CrossRefGoogle Scholar
  45. 45.
    Livens FR, Singleton DL (1991) Plutonium and americium in soil organic matter. J Environ Radioact 13:323–339CrossRefGoogle Scholar
  46. 46.
    Xia Y, Rao L, Rai D, Felmy AR (2001) Determining the distribution of Pu, Np and U oxidation states in diluted NaCl and synthetic brine solutions. J Radioanal Nucl Chem 250:27–37CrossRefGoogle Scholar
  47. 47.
    Lujanienė G, Šapolaitė J, Radžiūtė E, Aninkevičius V (2009) Plutonium oxidation state distribution in natural clay and goethite. J Radioanal Nucl Chem 282:793–797CrossRefGoogle Scholar
  48. 48.
    Lujanienė G (2011) Determination of Pu, Am and Cm in environmental samples. In: Proceedings IAEA. International symposium on isotopes in hydrology, marine ecosystems, and climate change studies. IAEA, Monaco, March 27–April 1 2011Google Scholar
  49. 49.
    Lujanienė G, Garnaga G, Jokšas K, Garbaras A, Skipitytė R, Ščiglo T, Barisevičiūtė R, Šilobritienė B, Radžiūtė E, Lagunavičienė L (2011) 137Cs, 239,240Pu, 241Am and trace elements behaviour in the Baltic Sea—effect of organic substances. Proceedings of  IAEA. International symposium on isotopes in hydrology, marine ecosystems, and climate change studies. IAEA, Monaco, March 27–April 1, 2011Google Scholar
  50. 50.
    Lujanienė G, Garnaga G, Remeikaitė-Nikienė N, Jokšas K, Garbaras A, Skipitytė R, Barisevičiūtė R, Šilobritienė B, Stankevičius A, Kulakauskaitė I, Ščiglo T (2012) Cs, Am and Pu isotopes as tracers of sedimentation processes in the Curonian Lagoon—Baltic Sea system. J Radioanal Nucl Chem. doi: 10.1007/s10967-012-2029-y Google Scholar
  51. 51.
    Beneš P, Štamberg K, Štegmann R (1994) Study of the kinetics of interaction of Cs-137 and Sr-85 with soils using a batch method: methodological problems. Radiochim Acta 66(67):315–321Google Scholar
  52. 52.
    Herbelin AL, Westall JC (1996) FITEQL computer programm for determination of chemical equilibrium constants from experimental data, version 3.2, report 96-01. Department of Chemistry, Oregon State University, CornvallisGoogle Scholar
  53. 53.
    Sachs S, Bernhard G (2011) Influence of humic acids on the actinide migration in the environment: suitable humic acid model substances and their application in studies with uranium—a review. J Radioanal Nucl Chem 290:17–29CrossRefGoogle Scholar
  54. 54.
    Stumpf Th, Henning C, Bauer A, Denecke MA, Fanghänel Th (2004) An EXAFS and TRLFS study of the sorption of trivalent actinides onto smectite and kaolinite. Radiochim Acta 92:133–138CrossRefGoogle Scholar
  55. 55.
    Stumpf T, Fernandes MM, Walther C, Dardenne K, Fanghänel T (2006) Structural characterization of Am incorporated into calcite: a TRLFS and EXAFS study. J Colloid Interface Sci 302:240–245CrossRefGoogle Scholar
  56. 56.
    Roussel-Debet S (2005) Experimental values for 241Am and 239+240Pu Kd’s in French agricultural soils. J Environ Radioact 79:171–185CrossRefGoogle Scholar
  57. 57.
    Ketterer ME, Gulin SB, MacLellan GD, Hartsock WJ (2010) Fluvial transport of chernobyl plutonium (Pu) to the Black Sea: evidence from 240Pu/239Pu atom ratios in Danube Delta sediments. Open Chem Biomed Methods J 3:197–201CrossRefGoogle Scholar
  58. 58.
    Buda RA, Banik NL, Kratz JV, Trautmann N (2008) Studies of the ternary systems humic substances: kaolinite: Pu(III) and Pu(IV). Radiochim Acta 96:657–665CrossRefGoogle Scholar
  59. 59.
    Zhao P, Zavarin M, Leif RN, Powell BA, Singleton MJ, Lindvall RE, Kersting AB (2011) Mobilization of actinides by dissolved organic compounds at the Nevada test site. Appl Geochem 26:308–318CrossRefGoogle Scholar
  60. 60.
    Lalonde K, Mucci A, Ouellet A, Gélinas Y (2012) Preservation of organic matter in sediments promoted by iron. Nature 483:198–200CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • G. Lujanienė
    • 1
    Email author
  • P. Beneš
    • 2
  • K. Štamberg
    • 2
  • K. Jokšas
    • 3
  • I. Kulakauskaitė
    • 1
  1. 1.SRI Center for Physical Sciences and TechnologyVilniusLithuania
  2. 2.Department of Nuclear ChemistryCTUPrague 1, Brehova 7Czech Republic
  3. 3.SRI Nature Research CentreVilniusLithuania

Personalised recommendations