Skip to main content
Log in

Nuclear field shift effect in isotope fractionation of thallium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Environmental transport of Tl is affected by redox reaction between Tl(I) and Tl(III) and ligand exchange reactions of them. In order to deepen the knowledge of Tl chemistry, we investigated fractionation of Tl stable isotopes (203Tl and 205Tl) in a chemical exchange system. Tl isotopes were fractionated in a liquid–liquid extraction system, in which aqueous and organic phases are hydrochloric acid solution and dichloroethane including a crown ether, respectively. After purification by ion-exchange chemistry, the isotope ratio of 205Tl/203Tl in equilibrated aqueous phase was measured precisely by multiple-collector–inductively-coupled-plasma–mass-spectrometry. A large isotope fractionation >1 ‰ was found. Electronic structures of possible Tl species (hydrated Tl+, Tl3+, and Tl chlorides) were calculated by ab initio methods, and the isotope fractionation factor was theoretically obtained. The isotope fractionation via intramolecular vibrations was calculated to be much smaller than the experimental result. The isotope fractionation via isotopic change in nuclear volume, named the nuclear field shift effect, was calculated to be >1 ‰ in Tl(I)–Tl(III) redox systems and/or ligand exchange systems of Tl(III). The nuclear field shift effect was found to be the major origin of Tl isotope fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Deruck A, Dams R (1985) J Radioanal Nucl Chem 94:87

    Article  CAS  Google Scholar 

  2. Urey HC (1947) J Chem Soc 562

  3. Bigeleisen J, Mayer MG (1947) J Chem Phys 15:261

    Article  CAS  Google Scholar 

  4. Bigeleisen J (1996) J Am Chem Soc 118:3676

    Article  CAS  Google Scholar 

  5. Nomura M, Higuchi N, Fujii Y (1996) J Am Chem Soc 118:9127

    Article  CAS  Google Scholar 

  6. Schauble EA (2007) Geochim Cosmochim Acta 71:2189

    Article  Google Scholar 

  7. Fujii T, Moynier F, Agranier A, Ponzevera E, Abe M (2011) Proc Radiochim Acta 1:387

    Google Scholar 

  8. Abe M, Suzuki T, Fuji Y, Hada M (2008) J Chem Phys 128:144309

    Article  Google Scholar 

  9. Abe M, Suzuki T, Fujii Y, Hada M, Hirao K (2008) J Chem Phys 129:164309

    Article  Google Scholar 

  10. Abe M, Suzuki T, Fujii Y, Hada M, Hirao K (2010) J Chem Phys 130:044309

    Article  Google Scholar 

  11. Fujii T, Moynier F, Albarède F (2009) Chem Geol 267:139

    Article  CAS  Google Scholar 

  12. Fujii T, Moynier F, Telouk P, Albarède F (2006) Astrophys J 647:1506

    Article  CAS  Google Scholar 

  13. Fujii T, Moynier F, Agranier A, Ponzevera E, Abe M (2011) Proc Radiochim Acta 1:339

    Google Scholar 

  14. Fujii T, Moynier F, Dauphas N, Abe M (2011) Geochim Cosmochim Acta 75:469

    Article  CAS  Google Scholar 

  15. Fujii T, Moynier F, Telouk P, Abe M (2010) J Phys Chem 114:2543

    Article  CAS  Google Scholar 

  16. Zinner EK, Moynier F, Stroud RM (2011) Proc Natl Acad Sci USA 108:19135

    Article  CAS  Google Scholar 

  17. Maréchal C, Telouk P, Albarède F (1999) Chem Geol 156:251

    Article  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision 6.1. Gaussian, Inc, Pittsburgh

    Google Scholar 

  19. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  20. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  21. Küchle W, Dolg WM, Stoll H, Preuss H (1991) Mol Phys 74:1245

    Article  Google Scholar 

  22. Jönsson P, He X, Fischer CF, Grant IP (2007) Comput Phys Commun 177:597

    Article  Google Scholar 

  23. The UTChem program package is available at http://utchem.qcl.t.u-tokyo.ac.jp/

  24. Faegri K (2001) Theor Chem Acc 105:252

    Article  CAS  Google Scholar 

  25. Tsuchiya T, Abe M, Nakajima T, Hirao K (2001) J Chem Phys 115:4463

    Article  CAS  Google Scholar 

  26. Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2005) J Phys Chem A 109:6575

    Article  CAS  Google Scholar 

  27. Koc K, Ishikawa Y (1994) Phys Rev A 49:794

    Article  CAS  Google Scholar 

  28. Read AJ, Aldridge LP (1992) J Solut Chem 21:1231

    Article  CAS  Google Scholar 

  29. Woods MJM, Gallagher PK, Hugus ZZ, King EL (1964) Inorg Chem 3:1313

    Article  CAS  Google Scholar 

  30. Hughes RH, Garner CS (1942) J Am Chem Soc 64:1644

    Article  CAS  Google Scholar 

  31. Hardcastle JE, Jordan TA, Alam I, Caswell LR (1984) J Radioanal Nucl Chem 87:259

    Article  CAS  Google Scholar 

  32. Koshima H, Onishi H (1986) Analyst 111:1261

    Article  CAS  Google Scholar 

  33. Lee HG (1972) Coord Chem Rev 8:289

    Article  CAS  Google Scholar 

  34. Blixt J, Glaser J, Mink J, Persson I, Persson P, Sandström M (1995) J Am Chem Soc 117:5089

    Article  CAS  Google Scholar 

  35. Persson I, Jaliehvand F, Sandström M (2002) Inorg Chem 41:192

    Article  CAS  Google Scholar 

  36. Vchirawangkwin V, Hoffer TS, Randolf BR, Rode BM (2007) J Comput Chem 28:1006

    Article  Google Scholar 

  37. King WH (1984) Isotope shifts in atomic spectra. Plenum Press, New York

    Google Scholar 

  38. Angeli I (2004) Atomic Data Nucl Data Tables 87:185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

FM acknowledged the support of NASA COSMO #NNX12AH70G, EXO #NNX12AD88G, and ICARES Washington University in St. Louis. AA thanks Conseil Régional de Bretagne for the funding of MS work. MA thanks the Japan Society for the Promotion of Science for the funding of Grant-in-Aid for JSPS Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Fujii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, T., Moynier, F., Agranier, A. et al. Nuclear field shift effect in isotope fractionation of thallium. J Radioanal Nucl Chem 296, 261–265 (2013). https://doi.org/10.1007/s10967-012-2181-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2181-4

Keywords

Navigation