Skip to main content
Log in

Prospects for the introduction of wide area monitoring using environmental sampling for proliferation detection

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The International Atomic Energy Agency (IAEA) is committed to strengthening and streamlining the overall effectiveness of the IAEA safeguards system within the context of the Non-Proliferation Treaty (NPT). The IAEA has investigated the use of environmental monitoring techniques and a variety of techniques were studied as part of extensive field trials. The efficacy of long-range monitoring depends on the availability of mobile signature isotopes or compounds and on the ability to distinguish the nuclear signatures from background signals and attribute them to a source. The Comprehensive Nuclear Test Ban Treaty (CTBT) also requires a variety of environmental sampling and analysis techniques. This paper serves as a scientific basis to start discussions of environmental sampling techniques that could be considered for wide-area monitoring for the detection of undeclared nuclear activities within the NPT or for the possible future use within the CTBT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rosenberg R, Brachet G, Lauppe W-D, Vintersved I, Nicholson K, Krey P, Swindle D, Wogman NA, Hanlen RC, others (1999) IAEA use of wide-area environmental sampling in the detection of undeclared nuclear activities. Member State Support Programmes to the IAEA STR-321

  2. Schoengold CR, DeMarre ME, Kirkwood EM (1961) Radiological effluents released from US continental tests 1961 through 1992. Bechtel Nevada, Las Vegas

    Google Scholar 

  3. IAEA (2001) Generic modes for use in assessing the impact of discharges of radioactive substances to the environment, safety series no. 19. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  4. Hetherington JA (1976) The behavior of plutonium nuclides in the Irish Sea. In: Miller MW, Stannard JN (eds) Environmental toxicity of aquatic radionuclides: models and mechanisms. Anna Arbor Science Publishers, Ann Arbor, pp 81–106

    Google Scholar 

  5. Jinks SM, Wrenn ME (1975) Chapter 11, radiocesium transport in the Hudson River Estuary. In: Miller MW, Stannard JN (eds) Environmental toxicity of aquatic radionuclides: models and mechanisms. Anna Arbor Science Publishers, Ann Arbor

    Google Scholar 

  6. Margvelashvily N, Maderich V, Zheleznyak M (1997) THREETOX_A computer code to simulate three-dimensional dispersion of radionuclides in stratified water bodies. Radiat Protect Dosim 73(1–4):177–180

    Article  CAS  Google Scholar 

  7. Okubo A (1971) Deep Sea Res 18:789–802

    Google Scholar 

  8. Onishi Y (1981) Sediment and contaminant transport model. J Hydraul Div 107(HY9):1089–1107

    Google Scholar 

  9. Onishi Y (1994) Chapter 11, contaminant transport models in surface waters. In: Chaudrey MH, Mays LW (eds) Computer modeling of free surface and pressurized flows, vol NATO ASI Series E applied sciences, vol 274. Kluwer Academic Publisher, Dordrecht, pp 313–341

  10. Onishi Y (2008) Surface water transport of radionuclides. In: Till JE, Grogan HA (eds) Radiological risk assessment and environmental analysis. Oxford University Press, New York, pp 147–207

    Chapter  Google Scholar 

  11. Onishi Y, Kivva SL, Zheleznyak MJ, Voitsehkovitch OV (2007) Aquatic assessment of the Chernobyl nuclear accident and its remediation. J Environ Eng 133(11):1015–1023

    Article  CAS  Google Scholar 

  12. Onishi Y, Schreiber DL, Codell RB (1979) Chapter 18, mathematical simulation of sediment and radionuclide transport in the Clinch River, Tennessee. In: Baker RA (ed) Processes involving contaminants and sediments. Ann Arbor Scientific Publisher, Ann Arbor

    Google Scholar 

  13. Onishi Y, Trent DS (1985) Three-dimensional simulation of flow, salinity, sediment, radionuclide movements in the Hudson River Estuary. Paper presented at the Proceedings of the 1985 Specialty Conference of the Hydraulics Division, Lake Buena Vista, August 12–17, 1985

  14. Onishi Y, Trent DS (1992) Turbulence modeling for deep ocean radionuclide. Int J Numer Methods Fluid 15(9):1059–1071

    Article  CAS  Google Scholar 

  15. Onishi Y, Voitsehkovitch OV, Zheleznyak MJ (eds) (2007) Chernobyl–What have we learned? the successes and failures to mitigate water contamination over 20 years. Springer, Dordrecht

    Google Scholar 

  16. Shepeleva T, Sizonenko V, Mezhneva I (1997) Simulation of countermeasure to diminish radionuclide fluxes from Chernobyl zone via aquatic pathways. Radiat Protect Dosim 73:177–180

    Article  Google Scholar 

  17. Voitsehkovitch OV, Zheleznyak MJ, Onishi Y (1994) Chernobyl nuclear accident hydrologic analysis and emergency evaluation of radionuclide distributions in the Dnieper River, Ukraine during the 1993 summer flood. Pacific Northwest Laboratory, Richland

    Book  Google Scholar 

  18. Zheleznyak M, Donchytz G, Hygynyak V, Marinetz A, Lyahenko G, Tkalitz P (2003) RIVTOX–One dimensional model for the simulation of the transport of radionuclides in a network of river channels. Institute of Mathematical Machines and System Problems, Kiev

    Google Scholar 

  19. Bowyer TW, Abel KH, Hensley WK, Hubbard CW, Panisko ME, Perkins RW, Reeder PL, Thompson RC, Warner RA (1996) Automatic radioxenon analyzer for CTBT monitoring. Pacific Northwest National Laboratory, Richland

    Book  Google Scholar 

  20. Bowyer TW, Abel KH, Hensley WK, Panisko ME, Perkins RW (1997) Ambient 133Xe levels in the Northeast US. J Environ Radioact 37:143–153

    Article  CAS  Google Scholar 

  21. Bowyer TW, Abel KH, Hubbard CW, Panisko ME, Reeder PL, Thompson RC, Warner RA (1998) Automated separation and measurement of radioxenon for the comprehensive test ban treaty. J Radioanal Nucl Chem 235:77–81

    Article  CAS  Google Scholar 

  22. Bowyer TW, Abel KH, Hubbard CW, Panisko ME, Reeder PL, Thompson RC, Warner RA (1998) Field testing of collection and measurement of radioxenons for the comprehensive test ban treaty. J Radioanal Nucl Chem 240:109–122

    Article  Google Scholar 

  23. Bowyer TW, Hayes JC, McIntyre JI (2007) Environmental measurements of radioxenon. In: Warwick P (ed) Environmental radiochemical analysis III. RSC Publishing, Cambridge, pp 44–51

    Google Scholar 

  24. Bowyer TW, Perkins RW, Abel KH, Hensley WK, Hubbard CW, McKinnon AD, Panisko ME, Reeder PL, Thompson RC, Warner RA (1998) Xenon radionuclides: atmospheric monitoring. In: Meyers RA (ed) Encyclopedia of environmental analysis and remediation, vol 8. Wiley-Interscience, New York, pp 5295–5314

    Google Scholar 

  25. Bowyer TW, Schlosser C, Abel KH, Auer M, Hayes JC, Heimbigner TR, McIntyre JI, Panisko ME, Reeder PL, Satorius H, Schulze J, Weiss W (2002) Detection and analysis of Xenon isotopes for the comprehensive Nuclear-Test-Ban Treaty International Monitoring System. J Environ Radioact 59(2):139–151

    Article  CAS  Google Scholar 

  26. Carman AJ, Bowyer TW, Hayes JC, Heimbigner TR, McIntyre JI, Panisko ME (2002) Discrimination between anthropogenic sources of atmospheric radioxenon. Paper presented at the Transactions of the 2002 ANS Winter Meeting, Washington, November 17–21, 2002

  27. Cooper MW, Bowyer TW, Hayes JC, Heimbigner TR, Hubbard CW, McIntyre JI, Schrom BT (2008) Spectral analysis of radioxenon. Paper presented at the Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, Portsmouth, September 23–25, 2008

  28. Le Petit G, Armand P, Brachet G, Taffary T, Fontaine J, Achim P, Blanchard X, Piwowarczyk J, Pointurier F (2008) Contribution to the development of atmospheric radioxenon monitoring. J Radioanal Nucl Chem 276(2):391–398

    Article  CAS  Google Scholar 

  29. Prelovskii VV, Kazarinov NM, Donets AY, Popov VY, Popov IY, Skirda NV (2007) The ARIX-03F mobile semiautomatic facility for measuring low concentrations of radioactive xenon isotopes in air and subsoil gas. Prib Tekh Eksp 3:117–121

    Google Scholar 

  30. Ringbom A, Larson T, Axelsson A, Elmgren K, Johansson C (2003) SAUNA-A system for automatic sampling, processing, and analysis of radioactive xenon. Nucl Instrum Meth Phys Res A 508(3):542–553

    Article  CAS  Google Scholar 

  31. NCRP (1975) Krypton-85 in the atmosphere-accumulation, biological, significance, and control technology. Task group on 85Kr of the Council’s Scientific Committee 38 on waste disposal, National Council on Radiation Protection and Measurements (NCRP), Bethesda

  32. Jenkins CE, Wogman NA, Rieck HG (1972) Radionuclide distribution in Olympic National Park Washington. Water Air Soil Pollut 1(2):181–204

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ned A. Wogman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wogman, N.A. Prospects for the introduction of wide area monitoring using environmental sampling for proliferation detection. J Radioanal Nucl Chem 296, 1071–1077 (2013). https://doi.org/10.1007/s10967-012-2076-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2076-4

Keywords

Navigation