Skip to main content
Log in

Pulse chirp effects in ultrafast laser-induced breakdown spectroscopy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

When compared to many other sensitive methods for material detection, such as inductively coupled mass spectroscopy and thermal ionization mass spectroscopy, laser-induced breakdown spectroscopy (LIBS) typically exhibits a lower signal-to-noise ratio (SNR), resulting in higher detection limits. Increasing the SNR of LIBS would improve the ability to characterize the sample composition with increased accuracy and speed and reduce the amount of material needed to perform analysis. We have been investigating the effect of simple ultrashort laser pulse shaping on the SNR of LIBS. Our goal is to control the dynamics of the ionization and recombination processes in the laser-produced plasma to favorably affect the SNR associated with the line emission from the plasma. Pulse shaping is performed using an acousto-optic programmable dispersive filter. An adaptive learning algorithm is being developed to automate the pulse shape optimization process for maximization of LIBS SNR in nuclear security-relevant material characterization scenarios. We report a 27 % increase of the SNR for non-gated LIBS measurements of uranium by utilizing simple pulse shaping limited exclusively to excess quadratic spectral phase of the laser pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pasquini C, Cortex J, Silva LMC, Gonzaga FB (2008) Appl Opt 47:G105

    Article  Google Scholar 

  2. Santagata A, Teghil R, Albano G, Spera D, Villani P, De Bonis A, Parisi GP, Galasso A (2007) Appl Surf Sci 254:863

    Article  CAS  Google Scholar 

  3. Bogarerts A, Chen Z (2005) Spec Acta B 60:1280

    Article  Google Scholar 

  4. Fantoni R, Caneve L, Colao F, Fornarini L, Lazic V, Spizzichino V (2002) Spec Acta B 57:1219

    Article  Google Scholar 

  5. Therstup BB, Toftmann JS, Doggett B, Lunney J (2002) Appl Surf Sci 197–198:175

    Google Scholar 

  6. Teghil R, Santagata A, De Bonis A, Albano G, Villani P, Spera D, Parisi GP, Galasso A (2008) Phys Scr 78:058113

    Article  Google Scholar 

  7. Multari RA, Foster LE, Cremers DA, Ferris MJ (1996) Appl Spec 50:1483

    Article  CAS  Google Scholar 

  8. Le Drogoff B, Margot J, Chaker M, Sabsabi M, Barthelemy O, Johnston TW, Laville S, Vidal F, Von Kaenel Y (2001) Spec Acta B 56:987

    Article  Google Scholar 

  9. De Giacomo A, Dell’agilo M, Santagata A, Teghil R (2005) Spec Acta B 60(31):935

    Article  Google Scholar 

  10. Angel SM, Stratis DN, Eland KL, Lai T, Berg MA, Gold DM (2001) Fresenius J Anal Chem 369:320

    Article  CAS  Google Scholar 

  11. Hwang DJ, Jeon H, Grigoropoulos CP, Yoo J, Russo RE (2007) Appl Phys Lett 91:251118

    Article  Google Scholar 

  12. Gunaratne T, Kangas M, Singh S, Gross A, Dantus M (2006) Chem Phys Lett 423:197

    Article  CAS  Google Scholar 

  13. Elhassan A, Giakoumaki A, Anglos D, Ingo GM, Robbiola L, Harith MA (2008) Spec Acta B 63(4):504

    Article  Google Scholar 

  14. Baudelet M, Guyon L, Yu J, Wolf J-P, Amodeo T, Frehafon E, Laloi P (2006) J Appl Phys 99:084701

    Article  Google Scholar 

  15. Guillermin M, Liebig C, Garrelie F, Stoian R, Loir A-S, Audouard E (2009) Appl Surf Sci 255(10):5163

    Article  CAS  Google Scholar 

  16. Guillermin M, Klini A, Colobier J-P, Garrelie F, Gray D, Liebig C, Audouard E, Fotakis C, Stoian R (2010) Opt Express 18:11159

    Article  CAS  Google Scholar 

  17. Qiu TQ, Tien CL (1992) Int J Heat Mass Trans 35:719

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was performed under the Nuclear Forensics Graduate Fellowship Program and the Nuclear Forensics Junior Faculty Award, which are sponsored by the US Department of Homeland Security Domestic Nuclear Detection Office and the US Department of Defense, Defense Threat Reduction Agency. The authors would also like to acknowledge The Pennsylvania State University Radioactive Material Safety Program for their assistance in acquiring uranium samples for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Hartig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartig, K.C., McNutt, J.P., Ko, P. et al. Pulse chirp effects in ultrafast laser-induced breakdown spectroscopy. J Radioanal Nucl Chem 296, 135–141 (2013). https://doi.org/10.1007/s10967-012-2038-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2038-x

Keywords

Navigation