Skip to main content
Log in

Research reactors as sources of atmospheric radioxenon

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radioxenon emissions of the TRIGA Mark II research reactor in Vienna were investigated with respect to a possible impact on the verification of the Comprehensive Nuclear Test-Ban-Treaty. Using the Swedish Automatic Unit for Noble Gas Acquisition (SAUNA II), five radioxenon isotopes 125Xe, 131mXe, 133mXe, 133Xe and 135Xe were detected, of which 125Xe is solely produced by neutron capture in stable atmospheric 124Xe and hence acts as an indicator for neutron activation processes. The other nuclides are produced in both fission and neutron capture reactions. The detected activity concentrations ranged from 0.0010 to 190 Bq/m³. The source of the radioxenon is not yet fully clarified, but it could be micro-cracks in the fuel cladding, fission of 235U contaminations on the outside of the fuel elements or neutron activation of atmospheric Xe. Neutron deficient 125Xe with its highly complex decay scheme was seen for the first time in a SAUNA system. In many experiments the activity ratios of the radioxenon nuclides carry the signature of nuclear explosions, if 131mXe is omitted. Only if 131mXe is included into the calculations of the isotopic activity ratios, the majority of the measurements revealed a “civil” signature (typical for a NPP). A significant contribution of the TRIGA Vienna to the global or European radioxenon inventory can be excluded. Due to the very low activities, the emissions are far below any concern for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kalinowski MB, Pistner C (2006) J Environ Radioact 88:215–235

    Article  CAS  Google Scholar 

  2. Saey PRJ (2009) J Environ Radioact 100:396–406

    Article  CAS  Google Scholar 

  3. Saey P, Schlosser C, Achim P, Auer M, Axelsson A, Becker A, Blanchard X, Brachet G, Cella L, De Geer L-E, Kalinowski M, Le Petit G, Peterson J, Popov V, Popov Y, Ringbom A, Sartorius H, Taffary T, Zähringer M (2010) Pure Appl Geophys 167:499–515

    Article  Google Scholar 

  4. Saey PRJ, Auer M, Becker A, Hoffmann E, Nikkinen M, Ringbom A, Tinker R, Schlosser C, Sonck M (2010) J Environ Radioact 101:730–738

    Article  CAS  Google Scholar 

  5. Saey PRJ, Bowyer TW, Ringbom A (2010) Appl Radiat Isot 68:1846–1854

    Article  CAS  Google Scholar 

  6. Bowyer TW, Biegalski SR, Cooper M, Eslinger PW, Haas D, Hayes JC, Miley HS, Strom DJ, Woods V (2011) J Environ Radioact 102:681–687

    Article  CAS  Google Scholar 

  7. Kalinowski M, Axelsson A, Bean M, Blanchard X, Bowyer T, Brachet G, Hebel S, McIntyre J, Peters J, Pistner C, Raith M, Ringbom A, Saey P, Schlosser C, Stocki T, Taffary T, Ungar RK (2010) Pure Appl Geophys 167:517–539

    Article  Google Scholar 

  8. Ringbom A, Larson T, Axelsson A, Elmgren K, Johansson C (2003) Nucl Instrum Methods Phys Res, Sect A 508:542–553

    Article  CAS  Google Scholar 

  9. Steinhauser G, Villa M (2011) Appl Radiat Isot 69:1618–1620

    Article  CAS  Google Scholar 

  10. ORNL (2000) SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation. In Nureg/Cr-0200, Rev 6 (ORNL/NUREG/CSD-2/R6), Vols I, II, and III

  11. Steinhauser G, Sterba JH, Bichler M (2007) Appl Radiat Isot 65:488–503

    Article  CAS  Google Scholar 

  12. Adlassnig W, Steinhauser G, Peroutka M, Musilek A, Sterba JH, Lichtscheidl IK, Bichler M (2009) Appl Radiat Isot 67:2117–2122

    Google Scholar 

  13. Haas DA, Biegalski SR, Foltz BKM (2009) J Radioanal Nucl Chem 282:677–680

    Article  CAS  Google Scholar 

  14. Böck H, Hammer J, Schachner H, Klapfer E (1985) AIAU report 85301 Atominstitut

Download references

Acknowledgments

We thank Steven Biegalski (University of Texas) for interesting discussions as well as Irene Schraick (Austrian Institute of Technology) for providing gaseous xenon for our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Steinhauser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinhauser, G., Lechermann, M., Axelsson, A. et al. Research reactors as sources of atmospheric radioxenon. J Radioanal Nucl Chem 296, 169–174 (2013). https://doi.org/10.1007/s10967-012-1949-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1949-x

Keywords

Navigation