Skip to main content
Log in

Instrumental neutron absorption activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We present and discuss a modification of instrumental neutron activation analysis (INAA) that is sensitive for nuclides that do not yield (suitable) activation products but have high cross sections for neutron absorption. Their presence in a sample may thwart INAA by neutron flux suppression inside the sample, but they remain undetected and thus unnoticed by the analyst. In particular, this refers to Li, B, Cd and Gd. The proposed method—instrumental neutron absorption activation analysis (INAAA)—takes advantage of the flux depression inside the sample caused by the neutron absorbers. It is made visible by addition of an activatable nuclide (indicator). The concentration of the neutron absorber (analyte) causes a decrease in activity of the indicator. The activity difference between a mixed sample (sample plus indicator) and the pure indicator carries the analytical information. The calibration curve hence follows a reciprocal exponential function. In a proof-of-principle experiment, the applicability for the quantification of boron was exemplified. In presence of only one neutron absorber (whose nature is known), INAAA can be applied easily for quantification of the analyte in powdered or liquid samples. Although INAAA is no trace sensitive method, it has the potential to increase the reliability of INAA analyses by fast and straightforward quality control (even in presence of two or more neutron absorbing nuclides). It is especially suited for research reactors that do not operate a prompt gamma neutron activation analysis (PGNAA) station.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Greenberg RR, Bode P, De Nadai Fernandes EA (2011) Spectrochim Acta B Atom Spectrosc 66:193–241

    Article  CAS  Google Scholar 

  2. Doostmohammadi V, Sardari D, Nasrabadi AM (2010) J Radioanal Nucl Chem 283:403–407

    Article  CAS  Google Scholar 

  3. Fantidis JG, Nicolaou GE, Potolias C, Vordos N, Bandekas DV (2011) J Radioanal Nucl Chem 290:289–295

    Article  CAS  Google Scholar 

  4. Pfennig G, Klewe-Nebenius H, Seelmann-Eggebert W (1998) Karlsruher Nuklidkarte. Forschungszentrum Karlsruhe GmbH, Karlsruhe

    Google Scholar 

  5. Yakubovich AL, Zaitsev EI (1962) Zavod Lab 28:819–823

    CAS  Google Scholar 

  6. Kornilov YP, Kuz’kin SF, Nebera VP (1968) Izv Vyssh Ucheb Zaved Tsvet Met 11:141–145

    CAS  Google Scholar 

  7. Kuz’kin SF, Nebera VP, Kornikov YP (1971) Izv Vyssh Ucheb Zaved Tsvet Met 14:144–149

    Google Scholar 

  8. Hellwig KD (1974) Fresenius’ Z Anal Chem 268:343–347

    Article  CAS  Google Scholar 

  9. Eichholz GG, Hendrix WA (1974) Radiochem Radioanal Lett 19:157–161

    CAS  Google Scholar 

  10. Mejzlik M, Cidlinsky M, Kvitek J, Hoffman J (1983) Sklar Keram 33:327–329

    CAS  Google Scholar 

  11. Volegov VV, Kolesov VI, Pan’kov AS, Teslenko OP, Tsukanov SV (1981) Determination of boron concentration. SU Patent 76-2430172 813213

  12. Giles HL, Holmes GM (1979) J Radioanal Chem 48:65–72

    Article  CAS  Google Scholar 

  13. Zitnansky B, Valent J (1973) Jad Energ 19:229–231

    CAS  Google Scholar 

  14. Sotnichenko NI, Taranets ET (1972) Yad-Geofiz Metody 222–227

  15. Sotnichenko NI (1972) Yad-Geofiz Metody 228–232

  16. Frazzoli FV, Mancini C (1973) Kerntechnik 15:136

    CAS  Google Scholar 

  17. Steinhauser G, Sterba JH, Bichler M (2007) Appl Radiat Isot 65:488–503

    Google Scholar 

  18. Steinhauser G, Bichler M (2008) Appl Radiat Isot 66:1–8

    Google Scholar 

Download references

Acknowledgments

We are indebted to Erwin Jericha and Mario Villa for fruitful discussions on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Steinhauser.

Additional information

Dedicated to the memory of Professor Friedrich Grass (1927–2010), a pioneer in activation analysis, a great scientist, teacher, colleague and friend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinhauser, G., Merz, S. & Sterba, J.H. Instrumental neutron absorption activation analysis. J Radioanal Nucl Chem 296, 165–168 (2013). https://doi.org/10.1007/s10967-012-1925-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1925-5

Keywords

Navigation