Skip to main content

Continuous separation of Sr, Y and some actinides by mixed solvent anion exchange and determination of 89,90Sr, 238,239Pu and 241Am in soil and vegetation samples


Methodology for the determination of 89,90Sr, Am and Pu isotopes in complex samples is given. Methodology is based on simultaneous isolation of Sr, Y and actinides from samples by mixed solvent anion exchange chromatography, mutual separation of 89,90Sr and 90Y from actinides, mutual separation of Th, Pu and Am by extraction chromatography, quantitative determination of 89,90Sr by Cherenkov counting and quantitative determination of Pu and Am isotopes in soil and vegetation samples by alpha spectrometry. It is shown that Y and Sr can be efficiently separated from alkaline, alkaline earth and transition elements as well as from lanthanides and actinides on the column filed by strong base anion exchanger in nitrate form and 0.25 M HNO3 in mixture of ethanol and methanol as eluent. It is also shown that Pu, Am and Th strongly binds on the mentioned column, can be separated from number of elements and easily be eluted from column by water. After elution actinides were mutually separated on TRU column and electrodeposited on stainless steel disc. Examination of conditions of electrodeposition was shown that chloride-oxalate electrolyte with addition of DTPA in presence of sodium hydrogen sulphate in cell with cooling and rotating platinum anode enables deposition of actinides within 1 h by 0.8 A cm−2 current density. Obtained peaks FWHM for Pu, Am and Th isotopes are between 27 and 40 keV. Scanning electron microscopy picture and ED XRF analysis of electroplated discs showed that actinide deposition is followed by iron oxide formation on disc surface. The methodology was tested by determination of 89,90Sr, Am and Pu isotopes in ERA proficiency testing samples (low level activity samples). Obtained results shows that 89,90Sr, 241Am and 238,239Pu can be simultaneously separated on anion exchange column, 89,90Sr can be determined by Cherenkov counting with a satisfactory accuracy and limit of determination within 1–3 days after separation. 241Am and 238,239Pu can easily be separated on TRU column and determined after electrodeposition with acceptable accuracy within 1 day.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    St-Amant N, White JC, Rousseau ME, Lariviere D, Ungar RK, Johnson S (2011) Appl Radiat Isot 69:8

    Article  CAS  Google Scholar 

  2. 2.

    Addleman RS, O’Hara MJ, Marks T, Grate JW, Egorov OB (2005) J Radioanal Nucl Chem 263(2):295

    CAS  Google Scholar 

  3. 3.

    Jassin IE (2005) J Radioanal Nucl Chem 263(1):95

    Article  Google Scholar 

  4. 4.

    Dulanská S, Remenec B, Mátel L, Galanda D (2011) J Radioanal Nucl Chem 287(3):841

    Article  Google Scholar 

  5. 5.

    Eikenberg J, Jäggi M, Beer H, Rüthi M, Zumsteg I (2009) Appl Radiat Isot 67:776

    Article  CAS  Google Scholar 

  6. 6.

    Lee MH, Ahn HJ, Park JH, Park YJ, Song K (2011) Appl Radiat Isot 69:295

    Article  CAS  Google Scholar 

  7. 7.

    Maxwell SL, Culligan BK, Noyes GW (2011) Appl Radiat Isot 69:917

    Article  CAS  Google Scholar 

  8. 8.

    Harrison JJ, Zawadzicki A, Chisari R, Wong HKY (2010) J Environ Radioact 87:1

    Google Scholar 

  9. 9.

    Jakopič R, Tavčar P, Benedik L (2007) Appl Radiat Isot 65:504

    Article  Google Scholar 

  10. 10.

    Dulanská S, Remenec B, Mátel L, Antalı I (2011) J Radioanal Nucl Chem. doi:10.1007/s10967-011-1370-x

  11. 11.

    Dauner J, Workman S (2012) J Radioanal Nucl Chem. doi:10.1007/s10967-012-1676-3

  12. 12.

    Sengupta A, Adya VC, Godbole SV (2011) J Radioanal Nucl Chem. doi:10.1007/s10967-011-15896-6

  13. 13.

    Kuruc J, Harvan D, Galanda D, Mátel L, Jerigová M, Velič D (2011) J Radioanal Nucl Chem 289(2):611

    Article  CAS  Google Scholar 

  14. 14.

    Macsik Z, Shinonaga T (2010) Appl Radiat Isot 68:2147

    Article  CAS  Google Scholar 

  15. 15.

    Grahek Ž, Eškinja I, Košutić K, Lulić S, Kvastek K (1999) Anal Chim Acta 379:107

    Article  CAS  Google Scholar 

  16. 16.

    Rožmarić M, Gojmerac Ivšić A, Grahek Ž (2009) Talanta 80(1):352

    Article  Google Scholar 

  17. 17.

    Grahek Ž, Karanović G, Nodilo M (2011) J Radioanal Nucl Chem. doi:10.1007/s10967-011-1441-z

  18. 18.

    Talvitie NL (1972) Anal Chem 44:280

    Article  CAS  Google Scholar 

  19. 19.

    Hallstadius L (1984) Nucl Instrum Meth Phys Res 233:266

    Article  Google Scholar 

  20. 20.

    Bajo S, Eikenberg J (1999) J Radioanal Nucl Chem 242(3):745

    Article  CAS  Google Scholar 

  21. 21.

    Lee MH, Lee CW (2000) Nuclear. Instrum Methods Phys Res A 44(7):593

    Article  Google Scholar 

  22. 22.

    Tsoupko-Sitnikov V, Dayras F, De Sanoit J, Filossofov D (2000) Appl Radiat Isot 52:357

    Article  CAS  Google Scholar 

  23. 23.

    Salar Amoli H, Barker J, Flowers A (2006) J Radioanal Nucl Chem 268(3):497

    Article  Google Scholar 

  24. 24.

    Plions A, Haas D, Landsberger S, Brooks G (2008) J Radioanal Nucl Chem 276(3):369

    Article  Google Scholar 

  25. 25.

    Janda J, Sladek P, Sas D (2010) J Radioanal Nucl Chem 286(3):687

    Article  CAS  Google Scholar 

  26. 26.

    Beesely AM, Crespo MT, Weiher N, Tsapatsaris N, Cozar JS, Esparza H, Mendes CG, Hill P, Schroeder SLM, Montero-Cabrera ME (2009) Appl Radiat Isot 67:1559

    Article  Google Scholar 

  27. 27.

    Klemenčić H, Benedik L (2010) Appl Radiat Isot 68:1247

    Article  Google Scholar 

  28. 28.

    Currie L (1968) Anal Chem 40:586

    Article  CAS  Google Scholar 

  29. 29.

    Hansen PG (1959) J Inorg Nucl Chem 12:30

    Article  CAS  Google Scholar 

  30. 30.

    Hansen PG (1960) J Inorg Nucl Chem 17:232

    Article  Google Scholar 

  31. 31.

    Martin Sanchez A, Nuevo Sanchez MJ, Rubio Montero MP, Mendez Vilas A (2002) Appl Radiat Isot 56:31

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Željko Grahek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grahek, Ž., Nodilo, M. Continuous separation of Sr, Y and some actinides by mixed solvent anion exchange and determination of 89,90Sr, 238,239Pu and 241Am in soil and vegetation samples. J Radioanal Nucl Chem 293, 815–827 (2012).

Download citation


  • 89,90Sr
  • Alpha emitters
  • Mixed solvent
  • Anion exchange
  • Separation
  • Electrodeposition
  • Cherenkov counting