Journal of Radioanalytical and Nuclear Chemistry

, Volume 293, Issue 2, pp 655–663 | Cite as

Radon levels assessment in relation with seismic events in Vrancea region

  • M. ZoranEmail author
  • R. Savastru
  • D. Savastru


Due to the subcrustal earthquakes located at the sharp bend of the Southeast Carpathians, Vrancea zone in Romania has a high potential seismic hazard in Europe. Among several seismic precursors, radon anomalies in air, ground, and groundwater in the epicentral areas can be associated with the strain stress changes that occurred before and after earthquakes. In order to support this theoretical view, the main aim of this paper was to investigate temporal variations of radon concentration levels in air near the ground and in ground air by the use of solid state nuclear track detectors CR-39 and LR-115 in relation with some seismic events at two seismic stations Vrancioaia and Plostina, located in Vrancea active region. This paper reports essentially the observation of radon concentration levels in the air near the ground at 1 m height for the earthquakes that occurred during the period of November 2010–October 2011 and moment magnitudes M w in the range of \( 2.0 \le M_{\text{w}} \le 4.9 \). The average radon concentration in air above the ground measured with CR-39 detectors recorded for 1 year period in Vrancea area was 1,094.58 ± 150.3 Bq/m3 and 10 days fluctuations were placed in the range of 129 ± 40 Bq/m3 and 5,888 ± 700 Bq/m3. Also have been reported measurements of in soil radon concentrations in drill holes at 0.5 m depths during period of March 1977–October 1980, just after 4 March 1977, M w 7.4 Vrancea earthquake. The knowledge of air–ground–gas 222Rn anomalies is very important for earthquake pre-signals assessment as well as for precisely location of geologic active faults.


Radon in air and soil Seismic events Vrancea zone Romania 



This work was supported by the PN Program, Project: No. 09 27 01 03/2011-INOE of Romanian Ministry of Education, Research, Youth and Sport.


  1. 1.
    Yasuoka Y, Kawada Y, Nagahama H, Omori Y, Ishikawa T, Tokonami S, Shinogi M (2009) Phys Chem Earth 34:431–434CrossRefGoogle Scholar
  2. 2.
    Omori Y, Nagahama H, Kawada Y, Yasuoka Y, Ishikawa T, Tokonami S, Shinogi M (2009) Phys Chem Earth 34:435–440CrossRefGoogle Scholar
  3. 3.
    Smetanova I, Holy K, Muellerova M, Polaskova A (2009) J Radioanal Nucl Chem 283:101–109CrossRefGoogle Scholar
  4. 4.
    Igarashi G, Saeki S, Takahata N, Sumikawa K, Tasaka S, Sasaki Y, Takahashi Y, Sano Y (1995) Science 269:60–61CrossRefGoogle Scholar
  5. 5.
    Vinson DS, Vengosh A, Hirschfeld D, Dwyer GS (2009) Chem Geol 260:159–171CrossRefGoogle Scholar
  6. 6.
    LaBrecque JJ, Cordoves PR, Rosales PA, Audemard F, Romero G (2001) J Radioanal Nucl Chem 250:239–245CrossRefGoogle Scholar
  7. 7.
    Yasouka Y, Ishikawa T, Tokonami S, Takahashi H, Narazaki Y, Sinogi M (2008) J Radioanal Nucl Chem 275:165–172CrossRefGoogle Scholar
  8. 8.
    Plastino W, Panza GF, Doglioni C, Frezzotti ML, Peccerillo A, De Felice P, Bella F, Povinec PP, Nisi S, Ioannucci L, Aprili P, Balata M, Cozzella ML, Laubenstein M (2011) J Radioanal Nucl Chem 288:101–107. doi: 10.1007/s10967-010-0876-y CrossRefGoogle Scholar
  9. 9.
    Monnin MM, Seidel JL (1992) Nucl Instrum Methods A 314:316–330CrossRefGoogle Scholar
  10. 10.
    Virk HS, Singh B (1994) Geophys Res Lett 21:737–740CrossRefGoogle Scholar
  11. 11.
    King CY, Koizumi N, Kitagawa Y (1995) Science 269:38–39CrossRefGoogle Scholar
  12. 12.
    Baykara O, İnceöz M, Doğru M, Aksoy E, Külahcı F (2009) J Radioanal Nucl Chem 279(1):159–164. doi: 10.1007/s10967-007-7211-2 CrossRefGoogle Scholar
  13. 13.
    Giammanco S, Imme` G, Mangano G, Morelli D, Neri M (2009) Appl Radiat Isot 67:178–185CrossRefGoogle Scholar
  14. 14.
    Raileanu V, Bala A, Hauser F, Prodehl C, Fielitz W (2005) Tectonophysics 410:251–272CrossRefGoogle Scholar
  15. 15.
    Matenco L, Bertotti G (2000) Tectonophysics 316:255–286CrossRefGoogle Scholar
  16. 16.
    Wenzel F, Achauer U, Enescu D, Kissling E, Russo R, Mocanu V, Musacchio G (1998) EOS Trans Am Geophys Union 79(48):589CrossRefGoogle Scholar
  17. 17.
    Bala A, Radulian M, Popescu E (2003) J Geodyn 36:129–145CrossRefGoogle Scholar
  18. 18.
    Whittlestone S, Zahorowski W, Schery SD (1998) J Radioanal Nucl Chem 236:213–217CrossRefGoogle Scholar
  19. 19.
    Ghosh D, Deb A, Sengupta R, Bera S, Patra KK (2007) Radiat Meas 42:466–471CrossRefGoogle Scholar
  20. 20.
    Richon P, Bernard P, Labed V, Sabroux JC, Beneito A, Lucius D, Abbad S, Robe MC (2007) Radiat Meas 42:87–93CrossRefGoogle Scholar
  21. 21.
    Toutain J-P, Baubron J-C (1999) Tectonophysics 304:1–27CrossRefGoogle Scholar
  22. 22.
    Ghosh D, Deb A, Sengupta R (2009) J Appl Geophys 69:67–81CrossRefGoogle Scholar
  23. 23.
    Tsvetkova T, Przylibski TA, Nevinsky I, Nevinsky V (2005) Radiat Meas 40:98–105CrossRefGoogle Scholar
  24. 24.
    Wakita H, Nakamura Y, Notsu K, Noguchi M, Asada T (1980) Science 207:882–883CrossRefGoogle Scholar
  25. 25.
    Walia V, Su TC, Fu CC, Yang TF (2005) Radiat Meas 40:513–516CrossRefGoogle Scholar
  26. 26.
    Zoran M (1979) In: Cornea C, Radu I (eds) Seismological researches for Romanian earthquakes from March 4, 1977. Romanian Academy Press, Bucharest, pp. 447–452Google Scholar
  27. 27.
    Zoran M (2002) Rev Roum Geophys 46:111–118Google Scholar
  28. 28.
    Cicerone RD, Ebel JE, Britton J (2009) Tectonophysics 476:371–396CrossRefGoogle Scholar
  29. 29.
    Urbani F, LaBrecque JJ, Flores N, Cordoves PR (2006) J Radioanal Nucl Chem 269(1):187–193CrossRefGoogle Scholar
  30. 30.
    Dobrovolsky IP, Zubkov SI, Miachkin VI (1979) Pure Appl Geophys 117:1025–1029CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.National Institute of Research and Development for OptoelectronicsMagurele, IlfovRomania

Personalised recommendations