Journal of Radioanalytical and Nuclear Chemistry

, Volume 293, Issue 2, pp 565–572 | Cite as

Radon levels assessment in some Northern Romanian salt mines

  • Marian Romeo Calin
  • Maria ZoranEmail author
  • Mihaela Antonina Calin


Due to their low radioactivity background, underground salt mines spaces offer a unique possibility for speleotherapy use. The knowledge of radon concentration levels in such underground environments is essential for therapeutic purposes of different respiratory and rheumatic diseases. In order to develop speleotherapy in Romania, this paper presents the results of an indoor radon concentration levels survey in some salt mines in Romania. The survey was carried out using radon monitor Pylon AB-5 system methodology validated by a CIS-P5M system. In order to investigate whether differences in depth and microclimate parameters translate into significant differences in salt mine indoor radon concentrations, have been chosen three salts mine test sites placed in the Northern part of Romania (Turda, Cacica and Ocna Dej) in stable areas of the mining field at 32–120 m depth. Environmental microclimate conditions (mean values of air temperature 10–14.5 °C, air humidity 65–80%, air velocity 0.2 m/s saline aerosols and low microbial factors) have anti-bacterial, anti-microbial, and anti-inflammatory properties and recognized therapeutically effects on human body’s health. Air temperature is one of the most important factors which need to be considered when carrying out a survey of indoor radon concentrations in salt mines because temperature largely determines close spaces ventilation rates, and ventilation habits are known to have significant effects on indoor radon concentrations. The analyzed environmental conditions and recorded low levels of indoor mean radon concentration (6.9 ± 0.39 and 96.5 ± 4.76 Bq/m3) demonstrated the best suitability of the investigated three salt mines in Romania for speleotherapeutic applications.


Radon Salt mines: Turda, Cacica, Ocna Dej Romania Speleotherapy 



This work was supported by the PN Program, Projects: No. 09 37 03 01/2011-IFINHH and No. 09 27 01 03/2011-INOE of Romanian Ministry of Education, Research, Youth and Sport.


  1. 1.
    Vinson DS, Vengosh A, Hirschfeld D, Dwyer GS (2009) Relationships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA). Chem Geol 260:159–171CrossRefGoogle Scholar
  2. 2.
    Aytekin H, Baldık R, Celebi N, Ataksor B, Tasdelen M, Kopuz G (2006) Radon measurements in the caves of Zonguldak (Turkey). Radiat Prot Dosim 118(1):117–121CrossRefGoogle Scholar
  3. 3.
    Nenitescu C (1982) Inorganic chemistry. Didactic and Pedagogic Press, Bucharest (in Romanian)Google Scholar
  4. 4.
    Beamon S, Falkenbach A, Fainburg G, Linde K (2011) Speleotherapy for asthma. Cochrane Database Syst Rev 2:CD001741Google Scholar
  5. 5.
    Kavasi N, Somlai J, Kovacs T, Szabo T, Varhegyi A, Hakl J (2003) Occupational and patient doses in the therapeutic cave, Tapolca (Hungary). Radiat Prot Dosim 106(3):263–266CrossRefGoogle Scholar
  6. 6.
    Calin MR, Calin MA (2010) Evaluation of the Radon concentration in Ocna Dej salt mine, Romania. J Radioanal Nucl Chem 286(1):169–173CrossRefGoogle Scholar
  7. 7.
    Calin MR, Calin MA (2011) Investigations on the presence and distribution of Radon in the Cacica salt mine, Romania. J Radioanal Nucl Chem 288(1):203–206CrossRefGoogle Scholar
  8. 8.
    Horvath T (1986) Speleotherapy: a special kind of climatotherapy, its role in respiratory rehabilitation. Disabil Rehabil 8(2):90–92CrossRefGoogle Scholar
  9. 9.
    Visarion M, Polonic P, Ali Mehmed E (1976) Contributions to the study of the structural forms of the salt from the Transylvanian Depression. St Tehn Econ D (Prospecţiuni geofizice) 11:29–62, in RomanianGoogle Scholar
  10. 10.
    Marinescu F, Marunteanu M (1990) La paléogéographie au niveau du sel badénien en Roumanie. Geol Zentralbl Geol Carpath 41:49–58Google Scholar
  11. 11.
    Damijan Z, Kasprzak C (2010) Investigation of physical climate inside the lake Wessel Chamber. Acta Phys Pol A 118(1):31–34Google Scholar
  12. 12.
    Mera O, Stefanie T, Visinescu V (2010) Cetatea din muntele de sare, Turda, 1st edn. Turda, Romania. ISBN 978-973-0-07419-2Google Scholar
  13. 13.
    Calin MR. OSIM Patent No. 00375/2008. Detector tip camera de ionizare pentru masurarea radonului atmosferic in regim diferential (in Romanian)Google Scholar
  14. 14.
    UNSCEAR (2000) UNSCEAR 2000 report. Sources and effects of ionizing radiation. Report to the general assembly with scientific annexes. United Nations, New YorkGoogle Scholar
  15. 15.
    UNSCEAR (2008) UNSCEAR 2006 report. Effects of ionizing radiation. In: Annex E sources-to-effects assessment for radon in homes and workplaces, vol II. United Nations, New YorkGoogle Scholar
  16. 16.
    Liu CL, Zhao YJ, Li SS, Teng HJ, Wang ZM (2007) Influence of ventilation on the reduction of the radon concentration in an underground research facility. J Radioanal Nucl Chem 274(3):507–510CrossRefGoogle Scholar
  17. 17.
    UNSCEAR Report (2006) ANNEX E: sources-to-effects assessment for radon in homes and workplaces.
  18. 18.
    Ishikawa T, Hosoda M, Sorimachi A, Tokonami S, Katoh S, Ogashiwa S (2011) Radiological characterization of commercially available “radon spa sources”. J Radioanal Nucl Chem 287(3):709–713Google Scholar
  19. 19.
    Nagy K, Kavasi N, Kocacs T, Somlai J (2008) Radon therapy and speleotherapy in Hungary. Press Therm Climat 154:219–225Google Scholar
  20. 20.
    U.S. Environmental Protection Agency (2009) EPA assessment of risks from radon in homes. EPA, Washington, 402-R-03-003.
  21. 21.
    World Health Organization (2009) In: Zeeb H, Shannoun F (eds) WHO handbook on indoor radon: a public health perspective. World Health Organization, Geneva, pp 3–91Google Scholar
  22. 22.
    Becker K (2001) How much protection against radon do we need? Central Eur J Occup Environ Med 7(3-4):168–177Google Scholar
  23. 23.
    Somlai J, Kávási N, Szabó T, Várhegyi A, Kovács T (2007) The function of radon in curing respiratory diseases in the therapeutic cave of Tapolca. J Radioanal Nucl Chem 273(2):363–370CrossRefGoogle Scholar
  24. 24.
    Abdullaev AA, Gadzhiev KM, Eiubova AA (1993) The efficacy of speleotherapy in salt mines in children with bronchial asthma based on the data from immediate and late observations. Vopr Kurortol Fizioter Lech Fiz Kult 5:25–28Google Scholar
  25. 25.
    Elkins MR, Robinson M, Rose BR et al (2006) A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 354(3):229–240CrossRefGoogle Scholar
  26. 26.
    Garavello W, Romagnoli M, Sordo L, Gaini RM, Oi Berardino C, Angrisano A (2003) Hypersaline nasal irrigation in children with symptomatic seasonal allergic rhinitis: A randomized study. Pediatr Allergy Immunol 14:140–143CrossRefGoogle Scholar
  27. 27.
    Vagina NV, Fineburg GZ, Bachmetyev BA, Gervazieva VB, Belozyorova LM (1997) The influence of speleotherapy on allergic inflammation. Immunol Lett 56(2):331Google Scholar
  28. 28.
    Falkenbach A, Kovacs J, Franke A, Jorgens K, Ammer K (2005) Radon therapy for the treatment of rheumatic diseases—review and meta-analysis of controlled clinical trials. Rheumato Int 25:205–210CrossRefGoogle Scholar
  29. 29.
    Deetjen P, Falkenbach A, Harder D, Jöckel H, Kaul A, von Philipsborn H (2005) Radon therapy. Therapeutic effects, biological mechanism, and relative risk assessment. Radiat Environ Biophys 44(2):157–158CrossRefGoogle Scholar
  30. 30.
    Nagy K, Berhés I, Kovács T, Kávási N, Somlai J, Kovacs L, Barna I, Bender T (2009) Study on endocronological effects of radon speleotherapy on respiratory diseases. Int J Radiat Biol 85(3):281–290CrossRefGoogle Scholar
  31. 31.
    Somlai J, Kavasi N, Szabo T, Várhegyi A, Kovács T (2007) The function of radon in curing respiratory diseases in the therapeutic cave of Tapolca. J Radioanal Nucl Chem 273:363–370CrossRefGoogle Scholar
  32. 32.
    Kobal I, Smodis B, Burger J, Skofljanec M (1987) Atmospheric 222Rn in tourist caves of slovenia, Yugoslavia. Health Phys 52:473–479Google Scholar
  33. 33.
    Misdaq MA, Ouguidi J (2008) Radon, thoron and their decay products in natural caves with nuclear track detectors. Radiat Prot Dosim 130(1):110–114. doi: 10.1093/rpd/ncn128 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Marian Romeo Calin
    • 1
  • Maria Zoran
    • 2
    Email author
  • Mihaela Antonina Calin
    • 2
  1. 1.“Horia Hulubei” National Institute of Physics and Nuclear Engineering—IFIN HHMagureleRomania
  2. 2.National Institute of Research and Development for Optoelectronics INOE 2000MagureleRomania

Personalised recommendations