Skip to main content
Log in

Radon levels assessment in some Northern Romanian salt mines

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Due to their low radioactivity background, underground salt mines spaces offer a unique possibility for speleotherapy use. The knowledge of radon concentration levels in such underground environments is essential for therapeutic purposes of different respiratory and rheumatic diseases. In order to develop speleotherapy in Romania, this paper presents the results of an indoor radon concentration levels survey in some salt mines in Romania. The survey was carried out using radon monitor Pylon AB-5 system methodology validated by a CIS-P5M system. In order to investigate whether differences in depth and microclimate parameters translate into significant differences in salt mine indoor radon concentrations, have been chosen three salts mine test sites placed in the Northern part of Romania (Turda, Cacica and Ocna Dej) in stable areas of the mining field at 32–120 m depth. Environmental microclimate conditions (mean values of air temperature 10–14.5 °C, air humidity 65–80%, air velocity 0.2 m/s saline aerosols and low microbial factors) have anti-bacterial, anti-microbial, and anti-inflammatory properties and recognized therapeutically effects on human body’s health. Air temperature is one of the most important factors which need to be considered when carrying out a survey of indoor radon concentrations in salt mines because temperature largely determines close spaces ventilation rates, and ventilation habits are known to have significant effects on indoor radon concentrations. The analyzed environmental conditions and recorded low levels of indoor mean radon concentration (6.9 ± 0.39 and 96.5 ± 4.76 Bq/m3) demonstrated the best suitability of the investigated three salt mines in Romania for speleotherapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vinson DS, Vengosh A, Hirschfeld D, Dwyer GS (2009) Relationships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA). Chem Geol 260:159–171

    Article  CAS  Google Scholar 

  2. Aytekin H, Baldık R, Celebi N, Ataksor B, Tasdelen M, Kopuz G (2006) Radon measurements in the caves of Zonguldak (Turkey). Radiat Prot Dosim 118(1):117–121

    Article  CAS  Google Scholar 

  3. Nenitescu C (1982) Inorganic chemistry. Didactic and Pedagogic Press, Bucharest (in Romanian)

    Google Scholar 

  4. Beamon S, Falkenbach A, Fainburg G, Linde K (2011) Speleotherapy for asthma. Cochrane Database Syst Rev 2:CD001741

    Google Scholar 

  5. Kavasi N, Somlai J, Kovacs T, Szabo T, Varhegyi A, Hakl J (2003) Occupational and patient doses in the therapeutic cave, Tapolca (Hungary). Radiat Prot Dosim 106(3):263–266

    Article  CAS  Google Scholar 

  6. Calin MR, Calin MA (2010) Evaluation of the Radon concentration in Ocna Dej salt mine, Romania. J Radioanal Nucl Chem 286(1):169–173

    Article  CAS  Google Scholar 

  7. Calin MR, Calin MA (2011) Investigations on the presence and distribution of Radon in the Cacica salt mine, Romania. J Radioanal Nucl Chem 288(1):203–206

    Article  CAS  Google Scholar 

  8. Horvath T (1986) Speleotherapy: a special kind of climatotherapy, its role in respiratory rehabilitation. Disabil Rehabil 8(2):90–92

    Article  CAS  Google Scholar 

  9. Visarion M, Polonic P, Ali Mehmed E (1976) Contributions to the study of the structural forms of the salt from the Transylvanian Depression. St Tehn Econ D (Prospecţiuni geofizice) 11:29–62, in Romanian

    Google Scholar 

  10. Marinescu F, Marunteanu M (1990) La paléogéographie au niveau du sel badénien en Roumanie. Geol Zentralbl Geol Carpath 41:49–58

    Google Scholar 

  11. Damijan Z, Kasprzak C (2010) Investigation of physical climate inside the lake Wessel Chamber. Acta Phys Pol A 118(1):31–34

    CAS  Google Scholar 

  12. Mera O, Stefanie T, Visinescu V (2010) Cetatea din muntele de sare, Turda, 1st edn. Turda, Romania. ISBN 978-973-0-07419-2

    Google Scholar 

  13. Calin MR. OSIM Patent No. 00375/2008. Detector tip camera de ionizare pentru masurarea radonului atmosferic in regim diferential (in Romanian)

  14. UNSCEAR (2000) UNSCEAR 2000 report. Sources and effects of ionizing radiation. Report to the general assembly with scientific annexes. United Nations, New York

  15. UNSCEAR (2008) UNSCEAR 2006 report. Effects of ionizing radiation. In: Annex E sources-to-effects assessment for radon in homes and workplaces, vol II. United Nations, New York

  16. Liu CL, Zhao YJ, Li SS, Teng HJ, Wang ZM (2007) Influence of ventilation on the reduction of the radon concentration in an underground research facility. J Radioanal Nucl Chem 274(3):507–510

    Article  CAS  Google Scholar 

  17. UNSCEAR Report (2006) ANNEX E: sources-to-effects assessment for radon in homes and workplaces. www.unscear.org/docs/reports/2006/09

  18. Ishikawa T, Hosoda M, Sorimachi A, Tokonami S, Katoh S, Ogashiwa S (2011) Radiological characterization of commercially available “radon spa sources”. J Radioanal Nucl Chem 287(3):709–713

    Google Scholar 

  19. Nagy K, Kavasi N, Kocacs T, Somlai J (2008) Radon therapy and speleotherapy in Hungary. Press Therm Climat 154:219–225

    Google Scholar 

  20. U.S. Environmental Protection Agency (2009) EPA assessment of risks from radon in homes. EPA, Washington, 402-R-03-003. http://www.epa.gov/radon/pdfs/402-r-03-003.pdf

  21. World Health Organization (2009) In: Zeeb H, Shannoun F (eds) WHO handbook on indoor radon: a public health perspective. World Health Organization, Geneva, pp 3–91

  22. Becker K (2001) How much protection against radon do we need? Central Eur J Occup Environ Med 7(3-4):168–177

    Google Scholar 

  23. Somlai J, Kávási N, Szabó T, Várhegyi A, Kovács T (2007) The function of radon in curing respiratory diseases in the therapeutic cave of Tapolca. J Radioanal Nucl Chem 273(2):363–370

    Article  CAS  Google Scholar 

  24. Abdullaev AA, Gadzhiev KM, Eiubova AA (1993) The efficacy of speleotherapy in salt mines in children with bronchial asthma based on the data from immediate and late observations. Vopr Kurortol Fizioter Lech Fiz Kult 5:25–28

    Google Scholar 

  25. Elkins MR, Robinson M, Rose BR et al (2006) A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 354(3):229–240

    Article  CAS  Google Scholar 

  26. Garavello W, Romagnoli M, Sordo L, Gaini RM, Oi Berardino C, Angrisano A (2003) Hypersaline nasal irrigation in children with symptomatic seasonal allergic rhinitis: A randomized study. Pediatr Allergy Immunol 14:140–143

    Article  Google Scholar 

  27. Vagina NV, Fineburg GZ, Bachmetyev BA, Gervazieva VB, Belozyorova LM (1997) The influence of speleotherapy on allergic inflammation. Immunol Lett 56(2):331

    Google Scholar 

  28. Falkenbach A, Kovacs J, Franke A, Jorgens K, Ammer K (2005) Radon therapy for the treatment of rheumatic diseases—review and meta-analysis of controlled clinical trials. Rheumato Int 25:205–210

    Article  CAS  Google Scholar 

  29. Deetjen P, Falkenbach A, Harder D, Jöckel H, Kaul A, von Philipsborn H (2005) Radon therapy. Therapeutic effects, biological mechanism, and relative risk assessment. Radiat Environ Biophys 44(2):157–158

    Article  Google Scholar 

  30. Nagy K, Berhés I, Kovács T, Kávási N, Somlai J, Kovacs L, Barna I, Bender T (2009) Study on endocronological effects of radon speleotherapy on respiratory diseases. Int J Radiat Biol 85(3):281–290

    Article  CAS  Google Scholar 

  31. Somlai J, Kavasi N, Szabo T, Várhegyi A, Kovács T (2007) The function of radon in curing respiratory diseases in the therapeutic cave of Tapolca. J Radioanal Nucl Chem 273:363–370

    Article  CAS  Google Scholar 

  32. Kobal I, Smodis B, Burger J, Skofljanec M (1987) Atmospheric 222Rn in tourist caves of slovenia, Yugoslavia. Health Phys 52:473–479

    CAS  Google Scholar 

  33. Misdaq MA, Ouguidi J (2008) Radon, thoron and their decay products in natural caves with nuclear track detectors. Radiat Prot Dosim 130(1):110–114. doi:10.1093/rpd/ncn128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the PN Program, Projects: No. 09 37 03 01/2011-IFINHH and No. 09 27 01 03/2011-INOE of Romanian Ministry of Education, Research, Youth and Sport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Zoran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calin, M.R., Zoran, M. & Calin, M.A. Radon levels assessment in some Northern Romanian salt mines. J Radioanal Nucl Chem 293, 565–572 (2012). https://doi.org/10.1007/s10967-012-1686-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1686-1

Keywords

Navigation