Journal of Radioanalytical and Nuclear Chemistry

, Volume 292, Issue 3, pp 1329–1337 | Cite as

Foliar uptake of zinc by vascular plants: radiometric study

  • J. Marešová
  • L. Remenárová
  • M. Horník
  • M. Pipíška
  • J. Augustín
  • J. Lesný


The aim of this paper was to obtain quantitative data of foliar uptake kinetics and long distance transport of zinc in tobacco (Nicotiana tabacum L.) and hop (Humulus lupulus L.) plants. Zinc was used as a model of microelement and toxic metal, tobacco and hop as a representatives of agriculturally important plants. A tip of leaf blade was immersed in the solution spiked with 65ZnCl2 and foliar uptake and translocation to other parts of the plant grown in nutrient solution was measured by gamma-spectrometry and autoradiography. We found that foliar zinc uptake by both plants is dependent on the initial metal concentration within the range C0 = 10–100 μmol dm−3 ZnCl2. Zinc is immobilized mainly in immersed part of the contact leaf and only <1% is transported to non-immersed parts of the leaf. At C0 = 0.1 mmol dm−3 ZnCl2 concentrations >2.5 mg/g Zn and 4.8 mg/g Zn (dry wt.) in immersed part of tobacco and hop leaf plant, respectively were found after 5 days of exposure. Low mobility of zinc entering the plant via the leaf surface can be attributed to the immobilization of zinc into Zn–ligand complexes with high stability constants log K at pH 6.0–8.0, such as the reaction products of Zn2+ ions with citric acid, histidine or phosphates. Zinc can be extracted from dried leaves by the solutions of inorganic salts, carboxylic acids, amino acids and synthetic complexing ligands such as EDTA. Anionic (SDS) and non-ionic (Tween 40) surfactants causes the decrease of the Zn foliar uptake, but not translocation of Zn from the contact leaf area. Obtained data are discussed from the point of view of possible limited efficiency of liquid formulations designed for practical applications as Zn foliar fertilizers.


Zinc 65Zn Foliar uptake Translocation Tobacco Hop 


  1. 1.
    Tang S, Wang X (2002) Interaction between copper and radiocesium in Indian mustard and sunflower grown in the hydroponic solution. J Radioanal Nucl Chem 252:9–14CrossRefGoogle Scholar
  2. 2.
    McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley-Interscience, New YorkGoogle Scholar
  3. 3.
    Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175CrossRefGoogle Scholar
  4. 4.
    Singh A, Ward OP (2004) Applied bioremediation and phytoremediation. Springer, BerlinGoogle Scholar
  5. 5.
    Suresh B, Ravishankar GA (2004) Phytoremediation—a novel and promising approach for environmental clean-up. CRC Cr Rev Biotechnol 24:97–124CrossRefGoogle Scholar
  6. 6.
    Leduc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520CrossRefGoogle Scholar
  7. 7.
    Ohya T, Iikura H, Tanoi K, Nishiyama H, Nakanishi TM (2005) 109Cd uptake and translocation in a soybean plant under different pH conditions. J Radioanal Nucl Chem 264:303–306CrossRefGoogle Scholar
  8. 8.
    Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  9. 9.
    Freitas MC, Pacheco AMG, Anawar HM, Dionísio I, Dung HM, Canha N, Bettencourt A, Henriques F, Pinto-Gomes CJ, Capelo S (2009) Determination of phytoextraction potential of plant species for toxic elements in soils of abandoned sulphide-mining areas. J Radioanal Nucl Chem 282:21–27CrossRefGoogle Scholar
  10. 10.
    Morel JL, Echevarria G, Goncharova N (2006) Phytoremediation of metal contaminated soils. NATO Science Series, Springer, Berlin, pp 25–52Google Scholar
  11. 11.
    Singh SN, Tripathi RD (2007) Environmental bioremediation technologies. Springer, BerlinCrossRefGoogle Scholar
  12. 12.
    Willey N (2007) Phytoremediation: methods and reviews. Methods in biotechnology. Humana Press, Totowa. (II series)Google Scholar
  13. 13.
    Durstberger T, Bolhar-Nordenkampf HR, Meister MH, Zahrl J (2008) The foliar uptake of micronutrients. Acta Hortic 804:631–636Google Scholar
  14. 14.
    Stevens PJG, Gaskin RE, Hong SO, Zabkiewicz JA (1991) Contributions of stomatal infiltration and penetration to enhancements of foliar uptake by surfactants. Pestic Sci 33:371–382CrossRefGoogle Scholar
  15. 15.
    Zabkiewicz JA, Forster WA, Steele KD, Liu ZQ (1995) Comparison of uptake into field bean (Vicia faba) and wheat (Triticum Aestivum) of organosilicone and non-silicone surfactants. In: Gaskin RE (ed) Proceedings of the 4th international symposium on adjuvants for agrochemicals, Melbourne, pp 219–224Google Scholar
  16. 16.
    Fisher DB (2000) Long distance transport. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of Plants. American Society of Plant Physiologists, RockvilleGoogle Scholar
  17. 17.
    Panchal RH, Rao DD, Mehta BH, Baburajan A, Gaikwad RH (2011) Comparison of transfer factors of <sup>137</sup>Cs from soil to leafy vegetables in pot experiment and ambient environment. J Radioanal Nucl Chem. doi:10.1007/s10967-011-1578-9
  18. 18.
    Solecki J, Kruk M (2011) Determination of 137Cs, 90Sr, 40K radionuclides in food grain and commercial food grain products. J Radioanal Nucl Chem 289:185–190CrossRefGoogle Scholar
  19. 19.
    Hornik M, Pipiska M, Vrtoch L, Sekacova J, Augustin J, Lesny J (2008) Influence of complexing ligands on Zn uptake and translocation in tobacco and celery plants. Acta Agron Ovariensis 50:65–71Google Scholar
  20. 20.
    Pipiska M, Hornik M, Sekacova J, Augustin J, Lesny J (2008) Influence of complexing ligands and mineral nutrients on zinc foliar uptake and translocation in vascular plants. Cereal Res Commun 36:415–418CrossRefGoogle Scholar
  21. 21.
    Maresova J, Hornik M, Pipiska M, Augustin J (2009) Zinc uptake and distribution in ivy (Hedera helix L.) leaves. Nova Biotechnol 9:73–82Google Scholar
  22. 22.
    Hattink J, Weltje L, Wolterbeek HT, De Goeij JJM (2004) Accumulation, elimination and retention of 99Tc by duckweed. J Radioanal Nucl Chem 259:135–139CrossRefGoogle Scholar
  23. 23.
    El-Sweify FH, Metwally E, Abdel-Khalik H (2007) Simultaneous multi-element analysis of some edible pulses using neutron activation analysis. J Radioanal Nucl Chem 273:491–496CrossRefGoogle Scholar
  24. 24.
    Berlizov AN, Blum OB, Filby RH, Malyuk IA, Tryshyn VV (2008) Black poplar-tree (Populus nigra L.) bark as an alternative indicator of urban air pollution by chemical elements. J Radioanal Nucl Chem 276:15–21CrossRefGoogle Scholar
  25. 25.
    Ayrault S, Catinon M, Clochiatti R, Tissut M, Asta J (2009) Complementarity of analytical tools in biomonitoring studies. J Radioanal Nucl Chem 281:131–136CrossRefGoogle Scholar
  26. 26.
    Maharia RS, Dutta RK, Acharya R, Reddy AVR (2011) Correlation between heavy metal contents and antioxidant activities in medicinal plants grown in copper mining areas. J Radioanal Nucl Chem 1–6. doi:10.1007/s10967-011-1586-9
  27. 27.
    Srivastava A, Pathania D, Swain KK, Ajith N, Acharya R, Reddy AVR, Nayyar H (2011) Application of INAA for phyto-accumulation study of selenium by chickpea plant. J Radioanal Nucl Chem 1–4. doi:10.1007/s10967-011-1560-6
  28. 28.
    Vrtoch L, Pipiska M, Hornik M, Augustin J, Lesny J (2011) Sorption of cesium from water solutions on potassium nickel hexacyanoferrate-modified Agaricus bisporus mushroom biomass. J Radioanal Nucl Chem 287:853–862CrossRefGoogle Scholar
  29. 29.
    Hoagland DR (1920) Optimum nutrient solution for plants. Science 52:562–564CrossRefGoogle Scholar
  30. 30.
    Crowley DE, Smith W, Faber B, Manthey JA (1996) Zinc fertilization of avocado trees. Hort Sci 31:224–229Google Scholar
  31. 31.
    Furia TE (1972) Sequestrants in food. In: Furia TE (ed) CRC handbook of food additives, 2nd edn. CRC Press, West Palm BeachGoogle Scholar
  32. 32.
    Van Steveninck RFM, Barbare E, Fernando DR, Van Steveninck ME (1994) The binding of zinc but not cadmium by phytic acid in roots of crop plants. Plant Soil 167:157–164CrossRefGoogle Scholar
  33. 33.
    Nair NG, Perry G, Smith MA, Reddy VP (2010) NMR studies of zinc, copper, and iron binding to histidine, the principal metal ion complexing site of amyloid-β peptide. J Alzheimer’s Dis 20:57–66Google Scholar
  34. 34.
    Seaman JC, Hutchison JM, Jackson BP, Vulava VM (2003) In situ treatment of metals in contaminated soil with phytate. J Environ Qual 32:153–161CrossRefGoogle Scholar
  35. 35.
    Şimşek S, Ulusoy U (2004) UO2 2+, Tl+, Pb2+, Ra2+, Bi3+ and Ac3+ adsorption onto polyacrylamide-zeolite composite and its modified composition by phytic acid. J Radioanal Nucl Chem 261:79–86CrossRefGoogle Scholar
  36. 36.
    Reddy NR, Sathe SK (2002) Food phytates. CRC Press, Boca RatonGoogle Scholar
  37. 37.
    Karunaratne AM, Amerasinghe PH, Ramanujam VMS, Sandstead HH, Perera PAJ (2008) Zinc, iron and phytic acid levels of some popular foods consumed by rural children in Sri Lanka. J Food Compos Anal 21:481–488CrossRefGoogle Scholar
  38. 38.
    Crea F, De Stefano C, Milea D, Sammartano S (2008) Formation and stability of phytate complexes in solution. Coord Chem Rev 252:1108–1120CrossRefGoogle Scholar
  39. 39.
    Evans WJ, Martin CJ (1988) Interaction of Mg(II), Co(II), Ni(II), and Zn(II) with phytic acid. VIII. A calorimetric study. J Inorg Chem 32:259–268Google Scholar
  40. 40.
    Martin CJ, Evans WJ (1986) Phytic acid: divalent cation interactions: III. A calorimetric and titrimetric study of the pH dependence of copper(II) binding. J Inorg Biochem 28:39–55CrossRefGoogle Scholar
  41. 41.
    Vallee BL, Galdes A, Auld DS, Riordan JF (1983) Carboxypeptidase. In: Spiro TG (ed) Zinc enzymes, vol 5, chap 2 (metal ions in biology series. Wiley, New YorkGoogle Scholar
  42. 42.
    Dixon NE, Sargeson AM (1983) Roles of the metal ion in reactions of coordinated substrates and in some metalloenzymes. In: Spiro TG (ed) Zinc enzymes, vol 5, chap 7 (metal ions in biology series). Wiley, New YorkGoogle Scholar
  43. 43.
    White MC, Chaney RL, Decker AM (1980) Metal complexation in xylem fluid. Plant Physiol 67:311–315CrossRefGoogle Scholar
  44. 44.
    Mullins GK, Sommers LE, Houstley TL (1986) Metal speciation in xylem and phloem exudates. Plant Soil 96:311–315Google Scholar
  45. 45.
    Krijger GC, Vliet PMV, Wolterbeek HT (1999) Metal speciation in xylem exudate of Lycopersicon esculentum Mill—technetium. Plant Soil 212:163–171CrossRefGoogle Scholar
  46. 46.
    Kloster G, Klumpp E, Schwuger MJ (1993) Future developments for specimen banking and monitoring. Surfactants and complexing agents: New tasks for specimen banking? Sci Total Environ 139–140:479–490Google Scholar
  47. 47.
    Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380CrossRefGoogle Scholar
  48. 48.
    Tu M, Hurd C, Randall JM (2001) Weed control methods handbook. The nature conservancy. TNC′s, New YorkGoogle Scholar
  49. 49.
    Shakir K, Flex H, Benyamin K (1993) Effect of complexing agents and surfactants on the sorption of Co(II) by kaolinite. J Radioanal Nucl Chem 173:303–311CrossRefGoogle Scholar
  50. 50.
    Zabkiewiz JA, Forster WA (2003) Development of simple models for agrichemical uptake into plant foliage. NZ Plant Protect 56:61–65Google Scholar
  51. 51.
    Griffiths PC, Fallis IA, Chuenpratoom T, Watanesk R (2006) Metallosurfactants: interfaces and micelles. Adv Colloid Interface 122:107–117CrossRefGoogle Scholar
  52. 52.
    Forster WA, Zabkiewicz JA, Reiderer M (2004) Mechanisms of cuticular uptake into living plants: influence of xenobiotic dose and surfactant on uptake. In: Bohus P, Colombo A (eds) Proceedings of the 7th international symposium on adjuvants for agrochemicals. ISAA 2001 Foundation, Cape Town, pp 83–91Google Scholar
  53. 53.
    Nielsen CM, Stelle KD, Forster WA, Zabkiewicz JA (2005) Influence of dose and molecular weight on foliar mass uptake of surfactant. NZ Plant Protect 58:174–178Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • J. Marešová
    • 1
  • L. Remenárová
    • 1
  • M. Horník
    • 1
  • M. Pipíška
    • 1
  • J. Augustín
    • 1
  • J. Lesný
    • 1
  1. 1.Department of Ecochemistry and RadioecologyUniversity of SS Cyril and Methodius in TrnavaTrnavaSlovak Republic

Personalised recommendations