Skip to main content

Determination of chronological heavy metal deposition and pollution intensity in the bottom sediments of Mumbai Harbour Bay, India using 137Cs as tracer

Abstract

Downcore variation of trace metals in sediment cores along the coastal line is one of the markers to assess the intrusion of industrial pollutants into the aquatic environment. Fifty sediment core samples from the Mumbai Harbour Bay (MHB), were studied for the trace element content. MHB is a recipient of effluents from different industries situated all along its coast around Thane–Belapur region. The average concentrations of Titanium (Ti), Manganese (Mn), Iron (Fe), Nickel (Ni), Copper (Cu), Zinc (Zn) were determined by inductively coupled plasma-optical emission spectroscopy and complemented by analysing with energy dispersive X-ray fluorescence spectrometry. In addition to this, depth profiles of K and Ca were also studied to assess the homogeneity of the geological strata of the region. Trace metals such as Cu, Ni and Zn show enrichment between 16 to 28 cm, whereas, uniform distribution through out the core was observed for K, Ca, Ti, Mn and Fe. Chronology of the heavy metal deposition was predicated based on the average sedimentation rate (0.92 ± 0.08 cm year−1) derived using depth-wise 137Cs concentration profile in core of bottom sediment. The results of the analysis showed that MHB had received excess inputs of Cu, Ni and Zn in the year 1981, 1988 and 1982, respectively. Surface concentration of Cu, Ni, Zn and Fe compared to the reference site indicates moderate pollution in the recent years whereas for elements K, Ca, Ti and Mn, the values are normal indicating MHB unpolluted for the latter elements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bakan G, Ozkoc HB (2007) Int J Environ Study 64(1):45–57

    Article  CAS  Google Scholar 

  2. Akay HA, Karapire CO (2003) Water Res 37(3):813–822

    Article  Google Scholar 

  3. Hakanson L (1980) Water Res 14(5):975–1001

    Article  Google Scholar 

  4. Robbins JA, Edgington DN (1975) Geochim Cosmochim Acta 39:285–304

    Article  CAS  Google Scholar 

  5. Edgington DN, Klump JV, Robbins JA, Kusner YS, Pampura VD, Sandimirov IV (1991) Nature 350:601–604

    Article  CAS  Google Scholar 

  6. McHenry JR, Ritchie JC, Gill AC (1973) Water Resour Res 9:676–686

    Article  CAS  Google Scholar 

  7. Singhal RK, Manisha V, Basu H, Usha N, Reddy AVR (2010) J Radioanal Nucl Chem 285:353–358

    Article  CAS  Google Scholar 

  8. Kumar A, Singhal RK, Preetha J, Rupali K, Narayanan U, Suresh S, Mishra MK, Ranade AK (2008) Water Air Soil Pollut 192:293–302

    Article  CAS  Google Scholar 

  9. Singhal RK, Preetha J, Karpe R, Tirumalesh K, Kumar SC, Hegde AG (2006) Environ Int 32(2):224–228

    Article  CAS  Google Scholar 

  10. Mohamed ZUW, Mohamed CAR, Zaharudin A, Abdul K, IshakZal U, Mahmood W (2011) J Radioanal Nucl Chem 287(1):255–260

    Article  Google Scholar 

  11. Ribeiro GS, Rizzo A, Sánchez R, Arribére M (2003) J Radioanal Nucl Chem 258(3):583–595

    Article  Google Scholar 

  12. Ritchie JC, McHenry JR (1990) J Environ Qual 19:215–233

    Article  CAS  Google Scholar 

  13. Callender E, Robbins JA (1993) Water Resour Res 29:1787–1804

    Article  CAS  Google Scholar 

  14. Francis CW, Brinkley FS (1976) Nature 260:511–513

    Article  CAS  Google Scholar 

  15. Smith JT, Comans RNJ, Beresford NA, Wright SM, Howard B, Camplins WC (2000) Nature 405:141

    Article  CAS  Google Scholar 

  16. Abril JM (2004) Environ Pollut 129:31–37

    Article  CAS  Google Scholar 

  17. Blanc G, Jouanneau JM (2004) Environ Pollut 132:413–426

    Article  Google Scholar 

  18. Smith JT, Comans RNJ (1996) Geochim Cosmochim Acta 60:995–1004

    Article  CAS  Google Scholar 

  19. Hillmann U, Schimmack W, Jacob P, Bunzl K (1996) Radiat Environ Biophys 35:297

    Article  CAS  Google Scholar 

  20. Heit M, Tan YL, Klusek CS, Burke JC (1981) Water Air Soil Pollut 15:441–464

    Article  CAS  Google Scholar 

  21. Durham RW, Joshi SR (1980) Sci Total Environ 15:65–71

    Article  CAS  Google Scholar 

  22. Pennington W, Cambray RS, Fisher EM (1973) Nature 242:324–326

    Article  CAS  Google Scholar 

  23. Ribeiro GS, Rizzo A, Sánchez R, Arribére RM (2005) J Radioanal Nucl Chem 265(3):481–493

    Article  Google Scholar 

  24. Tee LT, Ahmad Z, Mohamed CAR (2003) J Radioanal Nucl Chem 256(1):115

    Article  Google Scholar 

  25. Aliev RA, Bobrov VA, Kalmykov SN, Melgunov MS, Vlasova IE, Shevchenko VP, Novigatsky AN, Lisitzin AP (2007) J Radioanal Nucl Chem 274(2):315

    Article  CAS  Google Scholar 

  26. Muller G (1979) Umschav 79:133–149

    Google Scholar 

  27. Audry S, Schaer J, Blanc G, Bossy C, Lavaux G (2004) Appl Geochem 19:269–275

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the encouragement provided by Prof. T. Mukherjee, Director of the Chemistry group. Authors also thank Shri Ajay Kumar of Health Physics Division to provide us the sediment samples collected from the Gharwal region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Singhal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singhal, R.K., Venkatesh, M., Wagh, D.N. et al. Determination of chronological heavy metal deposition and pollution intensity in the bottom sediments of Mumbai Harbour Bay, India using 137Cs as tracer. J Radioanal Nucl Chem 292, 863–869 (2012). https://doi.org/10.1007/s10967-011-1593-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1593-x

Keywords