Skip to main content
Log in

Effect of contact time, pH, humic acid and temperature on the sorption of radionuclide Am(III) onto attapulgite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Attapulgite has been applied in the sorption of metal and radionuclide ions since its discovery. Herein, radionuclide Am(III) sorption onto attapulgite was carried out at 25 °C in 0.01 mol/L NaNO3 solutions. Effects of contact time, Am(III) initial concentration, pH, humic acid and temperature on Am(III) sorption onto attapulgite were investigated. The sorption of Am(III) increases with increasing contact time and reaches a maximum value within 24 h at different Am(III) initial concentration. The fast sorption velocity indicates that strong chemical sorption or strong surface complexation contributes to the sorption of Am(III) onto attapulgite under the experimental conditions. The experimental data can be described well by the pseudo-second-order rate model. The sorption of Am(III) onto attapulgite is strongly dependent on pH values and surface complexation is the main sorption mechanism. The presence of HA enhances the sorption of Am(III) onto attapulgite at pH < 8.5, whereas, at pH > 8.5, little effect of HA on Am(III) sorption is observed. The Langmuir, Freundlich and D-R models were used to simulate the sorption data at different pH values and the results indicated that Langmuir model simulates the experimental data better than Freundlich and D-R models. The thermodynamic parameters indicates that the sorption of Am(III) onto attapulgite is an endothermic and spontaneous process. The results suggest that the attapulgite is a suitable material as an adsorbent for preconcentration and immobilization of Am(III) from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Das DK, Kumar S, Pathak PN, Tomar BS, Manchanda VK (2011) J Radioanal Nucl Chem 289:137–143

    Article  CAS  Google Scholar 

  2. Lee MH, Jung EC, Song K, Han YH, Shin HS (2011) J Radioanal Nucl Chem 287:639–645

    Article  CAS  Google Scholar 

  3. Dhami PS, Kannan R, Gopalakrishnan V, Ramanujam A, Salvi N, Udupa SR (1998) Biotechnol Lett 20:869–872

    Article  CAS  Google Scholar 

  4. Wang XK, Chen CL, Du JZ, Tan XL, Xu D, Yu SM (2005) Environ Sci Technol 39:7084–7088

    Article  CAS  Google Scholar 

  5. Wang XK, Chen CL, Hu WP, Ding AP, Xu D, Zhou X (2005) Environ Sci Technol 39:2856–2860

    Article  CAS  Google Scholar 

  6. Pathak PN, Choppin GR (2007) J Radioanal Nucl Chem 274:517–523

    Article  CAS  Google Scholar 

  7. Tripathi SC, Kannan R, Dhami PS, Naik PW, Munshi SK, Dey PK, Salvi NA, Chattopadhyay S (2011) J Radioanal Nucl Chem 287:691–695

    Article  CAS  Google Scholar 

  8. Bradley WF (1940) Am Miner 25:405–410

    CAS  Google Scholar 

  9. Cao E, Bryant R, Williams DJA (1998) Colloid Polym Sci 276:842–846

    Article  CAS  Google Scholar 

  10. Zhao YJ, Chen Y, Li MS, Zhou SY, Xue AL, Xing WH (2009) J Hazard Mater 171:640–646

    Article  CAS  Google Scholar 

  11. Fan QH, Shao DD, Lu Y, Wu WS, Wang XK (2009) Chem Eng J 150:188–195

    Article  CAS  Google Scholar 

  12. Chen H, Wang AQ (2009) J Hazard Mater 165:223–231

    Article  CAS  Google Scholar 

  13. Huang JH, Wang XG, Jin QZ, Liu YF, Wang Y (2007) J Environ Manag 84:229–236

    Article  CAS  Google Scholar 

  14. Huang JH, Liu YF, Wang XG (2008) J Hazard Mater 160:382–387

    Article  CAS  Google Scholar 

  15. Fan QH, Shao DD, Hu J, Wu WS, Wang XK (2008) Surf Sci 602:778–785

    Article  CAS  Google Scholar 

  16. Huang JH, Liu YF, Jin QZ, Wang XG, Yang J (2007) J Hazard Mater 143:541–548

    Article  CAS  Google Scholar 

  17. Tan LQ, Jin YL, Chen J, Wu J, Cheng XC, Feng LD (2011) J Radioanal Nucl Chem 289:601–610

    Article  CAS  Google Scholar 

  18. Tan LQ, Jin YL, Cheng XC, Wu J, Zhou W, Feng LD (2011) J Radioanal Nucl Chem 290:575–585

    Article  CAS  Google Scholar 

  19. Tan XL, Wang XK, Geckeis H, Rabung T (2008) Environ Sci Technol 42(17):6532–6537

    Article  CAS  Google Scholar 

  20. Tan XL, Fang M, Li JX, Lu Y, Wang XK (2009) J Hazard Mater 168:458–465

    Article  CAS  Google Scholar 

  21. Fan QH, Shao DD, Lu Y, Wu WS, Wang XK (2009) Chem Eng J 150:188–195

    Article  CAS  Google Scholar 

  22. Hu J, Shao DD, Chen CL, Sheng GD, Li JX, Wang XK, Nagatsu M (2010) J Phys Chem B 114:6779–6785

    Article  CAS  Google Scholar 

  23. Kara M, Yuzer H, Sabah E, Celik MS (2003) Water Res 37:224–232

    Article  CAS  Google Scholar 

  24. Ho YS, McKay G (1998) Process Saf Environ Prot 76:183–191

    Article  CAS  Google Scholar 

  25. Hu J, Chen CL, Sheng GD, Li JX, Chen YX, Wang XK (2010) Radiochim Acta 98:421–429

    Article  CAS  Google Scholar 

  26. Hu J, Xie Z, He B, Sheng GD, Chen CL, Li JX, Chen YX, Wang XK (2010) Sci China Ser B 53(6):1420–1428

    Article  CAS  Google Scholar 

  27. Tan XL, Chen CL, Yu SM, Wang XK (2008) Appl Geochem 23:2767–2777

    Article  CAS  Google Scholar 

  28. Mirajkar SP, Rao BS, Eapen MJ, Shiralkar VP (2001) J Phys Chem B 105:4356–4367

    Article  CAS  Google Scholar 

  29. Yang ST, Zhao DL, Zhang H, Lu SS, Chen L, Yu XJ (2010) J Hazard Mater 183:632–640

    Article  CAS  Google Scholar 

  30. Dubinin MM (1960) Chem Rev 60:235–241

    Article  CAS  Google Scholar 

  31. Ozcan A, Oncu EM, Ozcan AS (2006) Colloids Surf A 277:90–97

    Article  Google Scholar 

  32. Zhao GX, Zhang HX, Fan QH, Ren XM, Li JX, Chen YX, Wang XK (2010) J Hazard Mater 173:661–668

    Article  CAS  Google Scholar 

  33. Ren XM, Wang SW, Yang ST, Li JX (2010) J Radioanal Nucl Chem 283:253–259

    Article  CAS  Google Scholar 

  34. Lu SS, Guo ZQ, Zhang CC, Zhang SW (2011) J Radioanal Nucl Chem 287(2):621–628

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Environmental research projects in Jiang Su province, Department of Finance (2010330) and Jiangsu Natural Science Foundation (BK2008195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weigang Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, W., Liu, X. & Tan, L. Effect of contact time, pH, humic acid and temperature on the sorption of radionuclide Am(III) onto attapulgite. J Radioanal Nucl Chem 292, 1173–1179 (2012). https://doi.org/10.1007/s10967-011-1573-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1573-1

Keywords

Navigation