Skip to main content
Log in

A novel technique for simultaneous diagnosis and radioprotection by radioactive cerium oxide nanoparticles: study of cyclotron production of 137mCe

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 04 April 2013

Abstract

Application of nanoparticles in nuclear medicine has aimed to develop diagnosis and therapeutic techniques. Cerium oxide nanoparticles (CNPs) are expected to be useful for protection of healthy tissue from radiation-induced harm and could serve therapeutic function. Among a variety of cerium radioisotopes, 137mCe (T 1/2 = 34.4 h, IT (99.22%), β+ (0.779%)) could be a novel candidate radionuclide in the field of diagnosis owing to its appropriate half-life, 99.91% natural abundance of target and its intense gamma line at 254.29 keV. In this study, 137mCe excitation function via the natLa(p,3n) reaction was calculated by TALYS-1.2 and EMPIRE-3 codes. The excitation function calculations demonstrated that the natLa(p,3n)137mCe reaction leads to the formation of the 136/138Ce isotopic contamination in the 22–35 MeV energy range. Interestingly, the isotopic impurities of 137mCe could serve radio protector function. Overall results indicate that the cyclotron produced 137mCeO2 nanoparticles by irradiation of a target encompassing lanthanum oxide nanoparticles could be a potent alternative for conventional diagnostic radionuclides with simultaneous radioprotection capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bakht MK, Sadeghi M (2011) Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy. Ann Nucl Med. doi:10.1007/s12149-011-0505-z

  2. Mushtaq A (2010) Reactors are indispensable for radioisotope production. Ann Nucl Med 24:759–760

    Article  Google Scholar 

  3. Brown DM (2003) Drug delivery systems in cancer therapy. Humana Press, New Jersey

    Book  Google Scholar 

  4. Das D, Sureshkumar MK, Koley S, Mithal N, Pillai CGS (2010) Sorption of uranium on magnetite nanoparticles. J Radioanal Nucl Chem 285:447–454

    Article  CAS  Google Scholar 

  5. Chen C, Du X, Tan X, Wang X (2007) Sorption behavior of Co (II) on γ-Al2O3 in the presence of humic acid. J Radioanal Nucl Chem 273:227–233

    Article  CAS  Google Scholar 

  6. Sun YB, Wang Q, Yang ST, Sheng GD, Guo ZQ (2011) Characterization of nano-iron oxyhydroxides and their application in UO22+ removal from aqueous solutions. J Radioanal Nucl Chem. doi:10.1007/s10967-011-1325-2

  7. Chen J, Patil S, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–1450

    Article  CAS  Google Scholar 

  8. Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91

    Article  CAS  Google Scholar 

  9. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    Article  CAS  Google Scholar 

  10. Das M, Patil S, Bhargava N, Kang JF, Riedel JM, Seal S et al (2007) Autocatalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28:1918–1925

    Article  CAS  Google Scholar 

  11. Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577

    Article  CAS  Google Scholar 

  12. Rzigalinski BA, Bailey D, Chow L, Kuiry SC, Patil S, Merchant S et al (2003) Cerium oxide nanoparticles increase the lifespan of cultured brain cells and protect against free radical and mechanical trauma. FASEB J 17:A606

    Google Scholar 

  13. Colon J, Herrera L, Smith J, Patil S, Komanski C, Kupelian P et al (2009) Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed Nanotechnol Biol Med 5:225–231

    Article  CAS  Google Scholar 

  14. Kuchma MH, Komanski CB, Colon J, Teblum A, Masunov AE, Alvarado B, Babu S, Seal S, Summy J, Baker CH (2010) Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomed Nanotechnol Biol Med 6:738–744

    Article  CAS  Google Scholar 

  15. Colon J, Hsieh N, Ferguson A, Kupelian P, Seal S, Jenkins DW, Baker CH (2010) Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase. Nanomed Nanotechnol Biol Med 6:698–705

    Article  CAS  Google Scholar 

  16. Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J et al (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44:6054–6057

    Article  CAS  Google Scholar 

  17. Wang F, Han Y, Lim CS, Lu YH, Wang J, Xu J et al (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065

    Article  CAS  Google Scholar 

  18. Cheng L, Yang K, Zhang S, Shao M, Lee S, Liu Z (2010) Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles. Nano Res 3:722–732

    Article  CAS  Google Scholar 

  19. Kovacheva P, Avdeev G (2010) Application of mechanochemical activation for synthesis of uranium–lanthanoid mixed oxides. J Radioanal Nucl Chem 288:221–227

    Article  Google Scholar 

  20. Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S et al (2010) Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev 62:1094–1124

    Article  CAS  Google Scholar 

  21. Qaim SM (2010) Radiochemical determination of nuclear data for theory and applications. J Radioanal Nucl Chem 284:489–505

    Article  CAS  Google Scholar 

  22. Tel E, Baldik R, Aytekin H, Aydin A (2009) Investigation of the nuclear structure of the Be, Cr and Cu isotopes. Ann Nucl Energy 36:1333–1339

    Article  CAS  Google Scholar 

  23. Sadeghi M, Bakht MK, Mokhtari L (2011) Practicality of the cyclotron production of radiolanthanide142Pr: a potential for therapeutic applications and biodistribution studies. J Radioanal Nucl Chem 288:937–942

    Article  CAS  Google Scholar 

  24. Herman M, Oblozinsky P (2005) NNDC, Brookhaven National Laboratory. http://www.nndc.bnl.gov/empire219. Accessed September 2005

  25. Herman M, Capote R, Zerkin V, Trkov A, Wienke H, Sin M et al. (2011) EMPIRE: modular system for nuclear reaction calculations (version: 3.0 ARCOLE-2011). https://ndclx4.bnl.gov/gf/project/empire/. Accessed Mar 2011

  26. Belgya T, Bersillon O, Capote R, Fukahori T, Zhigang G, Goriely S et al (2006) Handbook for calculations of nuclear reaction data: Reference Input Parameter Library-2. Tech Rep IAEA-TECDOC-1506. International Atomic Energy Agency, Vienna

  27. Koning AJ, Hilairey S, Duijvestijn M (2009) TALYS-1.2: A nuclear reaction program. User manual, NRG, Netherlands. http://www.talys.eu/download-talys. Accessed 22 Dec 2009

  28. Koning AJ, Rochman D (2010) http://www.talys.eu/tendl-2010. TENDL-2010: TALYS-based Evaluated Nuclear Data Library. Nuclear Research and Consultancy Group (NRG) Petten, The Netherlands

  29. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM—the stopping and range of ions in matter. Nucl Instrum Methods B 268:1818–1823

    Article  CAS  Google Scholar 

  30. Firouzbakht ML, Schlyer DJ, Finn RD, Laguzzi G, Wolf AP (1993) Iodine-124 production: excitation function for the 124Te(d, 2n)124I and the 124Te(d, 3n)123I reactions from 7 to 24 MeV. Nucl Instrum Methods Phys Res B 79:909–910

    Article  Google Scholar 

  31. Sadeghi M, Mokhtari L (2010) Rapid separation of 67, 68 Ga from 68 Zn target using precipitation technique. J Radioanal Nucl Chem 284:471–473

    Article  CAS  Google Scholar 

  32. Kakavand T, Sadeghi M, Mokhtari L, Majdabadi A (2010) Zinc electrodeposition on copper substrate using cyanide bath for the production of 66, 67, 68 Ga. J Radioanal Nucl Chem 283:197–201

    Article  CAS  Google Scholar 

  33. Jalilian AR, Yari-Kamrani Y, Dehghan MK, Rajabifar S (2008) Preparation and evaluation of [201Tl](III)-DTPA complex for cell labeling. J Radioanal Nucl Chem 275:109–114

    Article  CAS  Google Scholar 

  34. El-Said H, Mostafa M, El-Amir MA (2009) Potential use of tungstocerate matrices on the separation of 113mIn from 110mAg relevant to the separation of the cyclotron-produced 111In from its silver target. J Radioanal Nucl Chem 279:263–269

    Article  CAS  Google Scholar 

  35. Mirzaii M, Seyyedi S, Sadeghi M, Gholamzadeh Z (2010) Cadmium electrodeposition on copper substrate for cyclotron production of 111In radionuclide. J Radioanal Nucl Chem 284:333–339

    Article  CAS  Google Scholar 

  36. Nayak D, Lahiri S (2002) Production of tracer packet of heavy and toxic elements. Radioanal Nucl Chem 254:619–623

    Article  CAS  Google Scholar 

  37. Mioduski T, Hao DA, Luan HH (1989) Separation of cerium from other lanthanides by leaching with nitric acid rare earth(III) hydroxide-cerium(IV) oxide mixtures. J Radioanalytical Nucl Chem 132:105–113

    Article  CAS  Google Scholar 

  38. Riedel A (1970) Radiochemical study of the separation of cerium(III) from lanthanum by solvent extraction using N-benzoyl-N-phenylhydroxylamine. Radioanalytical Nucl Chem 6:75–82

    Article  CAS  Google Scholar 

  39. Goswami D, Das AK (2004) Separation of lanthanum and cerium on modified fly ash bed. J Radioanalytical Nucl Chem 262:745–749

    Article  CAS  Google Scholar 

  40. Payne RF, Schulte SM, Douglas M, Friese JR, Farmer OT, Finn EC (2011) Investigation of gravity lanthanide separation chemistry. J Radioanalytical Nucl Chem 287:863–867

    Article  CAS  Google Scholar 

  41. Naught M, Wilkinson A, Nic M, Jirat J, Kosata B, Jenkins A (2006) IUPAC, compendium of chemical terminology. XML on-line corrected version: http://goldbook.iupac.org. ISBN 0-9678550-9-8. doi:10.1351/goldbook

  42. Zielhuis SW, Seppenwoolde JH, Mateus VP, Bakker CJ, Krijger GC, Storm G et al (2006) Lanthanide-loaded liposomes for multimodality imaging and therapy. Cancer Biother Radiopharm 21:520–527

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their thanks to Dr. Parvin Sarabadani of the Nanochemistry Laboratory, Agricultural, Medical and Industrial Research School, Iran for very useful discussions. Additionally, the authors would like to thank Mr. Mahdi Bakhtiari of Department of physics, Persian Gulf University, Iran for his supports in the MATLAB®-base calculations of this work. Finally, the authors would like to express their sincere thanks to Dr. Roberto Capote Noy of IAEA Nuclear Data Section, Vienna, Austria for his useful advice on application of the EMPIRE code. This research was supported by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-2008-10029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Sadeghi.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s10967-013-2485-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakht, M.K., Sadeghi, M. & Tenreiro, C. A novel technique for simultaneous diagnosis and radioprotection by radioactive cerium oxide nanoparticles: study of cyclotron production of 137mCe. J Radioanal Nucl Chem 292, 53–59 (2012). https://doi.org/10.1007/s10967-011-1483-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1483-2

Keywords

Navigation