Skip to main content
Log in

Sorption of radiocobalt on a novel γ-MnO2 hollow structure: effects of pH, ionic strength, humic substances and temperature

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel γ-MnO2 hollow structure has been synthesized using a simple chemical reaction between MnSO4 and KMnO4 in aqueous solution without using any templates, surfactants, catalysts, calcination and hydrothermal processes. As an example of potential applications, γ-MnO2 hollow structure was used as adsorbent in radionuclide 60Co(II) treatment, and showed an excellent ability. The effect of pH, contact time, ionic strength, humic acid (HA)/fulvic acid (FA), and temperature was investigated using batch techniques. The results indicated that the sorption of 60Co(II) on γ-MnO2 was obviously dependent on pH values but independent of ionic strength. The presence of HA/FA enhanced the sorption of 60Co(II) on γ-MnO2 at low pH, whereas reduced 60Co(II) sorption on γ-MnO2 at high pH. The kinetic sorption of 60Co(II) on γ-MnO2 can be well fitted by the pseudo-second-order rate equation. The thermodynamic parameters (ΔH 0, ΔS 0, ΔG 0) were also calculated from the temperature dependent sorption isotherms, and the results suggested that the sorption of 60Co(II) on γ-MnO2 was a spontaneous and endothermic process. The sorption of 60Co(II) on γ-MnO2 was attributed to surface complexation rather than ion exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yu SM, Li XG, Ren AP, Shao DD, Chen CL, Wang X (2006) J Radioanal Nucl Chem 268(2):387–392

    Article  CAS  Google Scholar 

  2. Kudesia V P(1990) Water pollution. Pragati Prakashan, Meerut, pp 84–102

  3. Rengaraj S, Moon SH (2002) Water Res 36:1783–1793

    Article  CAS  Google Scholar 

  4. Yu SM, Ren AP, Chen CL, Chen YX, Wang XK (2006) Appl Radiat Isot 64:455–461

    Article  CAS  Google Scholar 

  5. Chen CL, Xu D, Tan XL, Wang XK (2007) J Radioanal Nucl Chem 273:227–233

    Article  CAS  Google Scholar 

  6. Yu SM, Ren AP, Cheng J, Song XP, Chen C, Wang X (2007) J Radioanal Nucl Chem 273:129–133

    Article  CAS  Google Scholar 

  7. Chen L, Yu XJ, Zhao ZD, Pan JS (2008) J Radioanal Nucl Chem 275:209–216

    Article  CAS  Google Scholar 

  8. Khan SA (2003) J Radioanal Nucl Chem 258:3–6

    Article  CAS  Google Scholar 

  9. El-Khouly SH (2006) J Radioanal Nucl Chem 270:391–398

    Article  CAS  Google Scholar 

  10. Lopez H, Olguin MT, Bosch P, Bulbulian S (1995) J Radioanal Nucl Chem 200:19–23

    Article  CAS  Google Scholar 

  11. Khan SA, Rehman RU, Khan MA (1996) J Radioanal Nucl Chem 207:19–37

    Article  CAS  Google Scholar 

  12. Shakir K, Flex H, Benyamin K (1993) J Radioanal Nucl Chem 173:303–311

    Article  CAS  Google Scholar 

  13. Shahwan T, Erten HN (1999) J Radioanal Nucl Chem 241:151–155

    Article  CAS  Google Scholar 

  14. Dong WM, Wang XK, Shen Y, Zhao XD, Tao ZY (2000) J Radioanal Nucl Chem 245:431–434

    Article  CAS  Google Scholar 

  15. Todorov B, Pekov G, Djingova R (2008) J Radioanal Nucl Chem 278:9–15

    Article  CAS  Google Scholar 

  16. Wua CH, Linb CF, Mab HW, Hsib TQ (2003) Water Res 37:743–752

    Article  Google Scholar 

  17. Tan XL, Chang PP, Fan QH, Zhou X, Yu SM, WuWS WangXK (2008) Colloid Surf A 328:8–14

    Article  CAS  Google Scholar 

  18. Benaissa H, Benguella B (2004) Environ Pollut 130:157–163

    Article  CAS  Google Scholar 

  19. Lead JR, Hamilton-Taylor J, Peters A, Reiner S, Tipping E (1998) Anal Chim Acta 369:171–180

    Article  CAS  Google Scholar 

  20. Kinniburgh DG, Milne CJ, Benedetti MF, Pinheiro JP, Filius J, Koopal LK (1996) Environ Sci Technol 30:1687–1698

    Article  CAS  Google Scholar 

  21. Tan XL, Wang XK, Geckeis H, Rabung TH (2008) Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  22. Tao ZY, Zhang J, Zhai JJ (1999) Anal Chim Acta 395:199–203

    Article  CAS  Google Scholar 

  23. Zhang J, Zhai JJ, Zhao FZ, Tao ZY (1999) Anal Chim Acta 378:177–182

    Article  CAS  Google Scholar 

  24. Chin YP, Alken G, O’Loughlin E (1994) Environ Sci Technol 28:1853–1858

    Article  CAS  Google Scholar 

  25. Walanda DK, Lawrance GA, Donne SW (2005) J Power Sources 139:325–341

    Article  CAS  Google Scholar 

  26. Ananth MV, Pethkar S, Dakshinamurthi K (1998) J Power Sources 75:278–282

    Article  CAS  Google Scholar 

  27. Xu M, Kong L, Zhou W, Li H (2007) J Phys Chem C 111:19141–19147

    Article  CAS  Google Scholar 

  28. Fei JB, Cui Y, Yan XH, Qi W, Yang Y, Wang KW, He Q, Li JB (2008) Adv Mater. 20:452–456

    Article  Google Scholar 

  29. Li BX, Rong GX, Xie Y, Huang LF, Feng CQ (2006) Inorg Chem 45:6404–6410

    Article  CAS  Google Scholar 

  30. Benguella B, Benaissa H (2002) Water Res 36:2463–2474

    Article  CAS  Google Scholar 

  31. Tan LQ, Jin YL, Chen J, Cheng XC, Wu J, Feng LD (2011) J Radioanal Nucl Chem 289:601–610

    Article  CAS  Google Scholar 

  32. Yüzer H, Kara M, Sabah E, Çelik MS (2008) J Hazard Mater 151:33–37

    Article  Google Scholar 

  33. Wu CH (2007) J Colloid Interface Sci 311:338–346

    Article  CAS  Google Scholar 

  34. Pan G, Qin YW, Li XL, Hu TD, Wu ZY, Xie YN (2004) J Colloid Interface Sci 271:28–34

    Article  CAS  Google Scholar 

  35. Li XL, Pan G, Qin YW, Hu TD, Wu ZY, Xie YN (2004) J Colloid Interface Sci 27:35–40

    Google Scholar 

  36. Hayes KF, Leckie JO (1987) J Colloid Interface Sci 115:564–572

    Article  CAS  Google Scholar 

  37. Matis KA, Zouboulis AI, Hancock IC (1994) Bioresour Technol 49:253–259

    Article  CAS  Google Scholar 

  38. Tan XL, Wang XK, Chen CL, Sun AH (2007) Appl Radiat Isot 65:375–381

    Article  CAS  Google Scholar 

  39. Cotton F, Wilkinson G (1980) Wiley, New York, pp 255

  40. Esmadi F, Simm J (1995) Colloid Surf A 104:265–270

    Article  CAS  Google Scholar 

  41. Chen CL, Wang XK, Jiang H, Hu WP (2007) Colloid Surf A 302:121–125

    CAS  Google Scholar 

  42. Hu BW, Cheng W, Zhang H, Sheng GD (2010) J Radioanal Nucl Chem 285:389–398

    Article  CAS  Google Scholar 

  43. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  44. Kilpatrick M, Baker Jr, McKinney LL, Jr CD (1953) J Phys Chem C 57:385–390

    Article  CAS  Google Scholar 

  45. Zhou YT, Nie HL, Branford-White C, He ZY, Zhu LM (2009) J Colloid Interface Sci 330:29–37

    Article  CAS  Google Scholar 

  46. Ajmal M, Rao RAK, Anwar S, Ahmad J, Ahmad R (2003) Bioresour Technol 86:147–149

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Award Fund for Prominent Youth Scientists of Shandong Province of China (Project No. BS 2009DX014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mou, J., Wang, G., Shi, W. et al. Sorption of radiocobalt on a novel γ-MnO2 hollow structure: effects of pH, ionic strength, humic substances and temperature. J Radioanal Nucl Chem 292, 293–303 (2012). https://doi.org/10.1007/s10967-011-1408-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1408-0

Keywords

Navigation