Skip to main content
Log in

Impact of environmental conditions on the sorption behavior of radionuclide 63Ni(II) onto hierarchically structured γ-MnO2

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel hierarchically structured γ-MnO2 has been synthesized using a simple chemical reaction between MnSO4 and KMnO4 in aqueous solution without using any templates, surfactants, catalysts, calcination and hydrothermal processes. As an example of potential applications, hierarchically structured γ-MnO2 was used as adsorbent in radionuclide 63Ni(II) treatment, and showed an excellent ability. The effects of pH, ionic strength, temperature, humic acid (HA) and fulvic acid (FA) on the sorption of radionuclide 63Ni(II) to hierarchically structured γ-MnO2 have been investigated by using batch techniques. The results indicated that the sorption of 63Ni(II) on γ-MnO2 is obviously dependent on pH values but independent of ionic strength. The presence of HA/FA strongly enhances the sorption of 63Ni(II) on γ-MnO2 at low pH values, whereas reduces 63Ni(II) sorption at high pH values. The sorption of 63Ni(II) on γ-MnO2 is attributed to inner-sphere surface complexation rather than outer-sphere surface complexation or ion exchange. The thermodynamic parameters (ΔH 0, ΔS 0, ΔG 0) are also calculated from the temperature dependent sorption isotherms, and the results suggest that the sorption of 63Ni(II) on γ-MnO2 is a spontaneous and endothermic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen CL, Wang XK (2006) Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res 45:9144–9149

    Article  CAS  Google Scholar 

  2. Hu J, Xu D, Chen L, Wang XK (2009) Characterization of MX-80 bentonite and its sorption of radionickel in the presence of humic and fulvic acids. J Radioanal Nucl Chem 279:701–708

    Article  CAS  Google Scholar 

  3. Hu BW, Cheng W, Zhang H, Sheng GD (2010) Sorption of radionickel to goethite: effect of water quality parameters and temperature. J Radioanal Nucl Chem 285:389–398

    Article  CAS  Google Scholar 

  4. Chen L, Gao B, Lu SH, Dong YH (2011) Sorption study of radionickel on attapulgite as a function of pH, ionic strength and temperature. J Radioanal Nucl Chem 288:851–858

    Article  CAS  Google Scholar 

  5. Liu ZJ, Yang JW, Zhang ZC, Chen L, Dong YH (2011) Study of 63Ni(II) sorption on CMC-bound bentonite from aqueous solutions. J Radioanal Nucl Chem. doi:10.1007/s10967-011-1353-y

  6. Cornell RM, Aksoyoglu S (1992) Sorption of nickel on marl. J Radioanal Nucl Chem 164:389–396

    Article  CAS  Google Scholar 

  7. Han RP, Zou WH, Zhang ZP, Shi J, Yang JJ (2006) Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand I. Characterization and kinetic study. J Hazard Mater 137:384–395

    Article  CAS  Google Scholar 

  8. Han RP, Zhu L, Zou WH, Wang DT, Shi J, Yang JJ (2006) Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand II. Equilibrium study and competitive adsorption. J Hazard Mater B 137:480–488

    Article  CAS  Google Scholar 

  9. Tamura H, Katayama N, Furrich R (1997) The Co2+ adsorption properties of Al2O3, Fe2O3, Fe3O4, TiO2, and MnO2 evaluated by modeling with the Frumkin isotherm. J Colloid Interface Sci 195:192–202

    Article  CAS  Google Scholar 

  10. Fu G, Allen HE, Cowan CE (1991) Adsorption of cadmium and copper by manganese oxide. Soil Sci 152:72–81

    Article  CAS  Google Scholar 

  11. Catts JG, Langmuir D (1986) Adsorption of Cu, Pb, and Zn by γ-MnO2: applicability of the side binding-surface complexation model. Appl Geochem 1:255–264

    Article  CAS  Google Scholar 

  12. Kanungo SB, Paroda KM (1984) Interfacial behavior of some synthetic MnO2 samples during their adsorption of Cu2+ and Ba2+ from aqueous solution at 300 K. J Colloid Interface Sci 98:252–260

    CAS  Google Scholar 

  13. Zaman MI, Mustafaa S, Khan S, Xing BS (2009) Effect of phosphate complexation on Cd2+ sorption by manganese dioxide (β-MnO2). J Colloid Interface Sci 330:9–19

    Article  CAS  Google Scholar 

  14. Tonkin JW, Balistrieri LS, Murray JW (2004) Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Appl Geochem 19:29–53

    Article  CAS  Google Scholar 

  15. Tan XL, Fang M, Li JX, Lu Y, Wang XK (2009) Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mater 168:458–465

    Article  CAS  Google Scholar 

  16. Sheng GD, Wang SW, Hu J, Lu Y, Li JX, Dong YH, Wang XK (2009) Adsorption of Pb(II) on diatomite as affected via aqueous solution chemistry and temperature. Colloids Surf A 339:159–166

    Article  CAS  Google Scholar 

  17. Montavon G, Markai S, Andres Y, Grambow B (2002) Complexation studies of Eu(III) with alumina-bound polymaleic acid: effect of organic polymer loading and metal ion concentration. Environ Sci Technol 36:3303–3309

    Article  CAS  Google Scholar 

  18. Reiller P, Casanova F, Moulin V (2005) Influence of addition order and contact time on thorium(IV) retention by hematite in the presence of humic acids. Environ Sci Technol 39:1641–1648

    Article  CAS  Google Scholar 

  19. Yang ST, Li JX, Lu Y, Chen YX, Wang XK (2009) Sorption of Ni(II) on GMZ bentonite: effects of pH, ionic strength, foreign ions, humic acid and temperature. Appl Radiat Isot 67:1600–1608

    Article  CAS  Google Scholar 

  20. Shao DD, Xu D, Wang SW, Fan QH, Wu WS, Dong YH, Wang XK (2009) Modeling of radionickel sorption on MX-80 bentonite as a function of pH and ionic strength. Sci Chin B Chem 52:362–371

    Article  CAS  Google Scholar 

  21. Tan XL, Wang XK, Geckeis H, Rabung TH (2008) Sorption of Eu(III) on humic acid or fulvic acid bound to alumina studied by SEM-EDS, XPS, TRLFS and batch techniques. Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  22. Tao ZY, Zhang J, Zhai JJ (1999) Characterization and differentiation of humic acids and fulvic acids in soils from various regions of China by nuclear magnetic resonance spectroscopy. Anal Chim Acta 395:199–203

    Article  CAS  Google Scholar 

  23. Zhang J, Zhai JJ, Zhao FZ, Tao ZY (1999) Study of soil humic substances by cross-polarization magic angle spinning 13C nuclear magnetic resonance and pyrolysis-capillary gas chromatography. Anal Chim Acta 378:177–182

    Article  CAS  Google Scholar 

  24. Chin YP, Alken G, O’Loughlin E (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28:1853–1858

    Article  CAS  Google Scholar 

  25. Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147

    Article  CAS  Google Scholar 

  26. Fei JB, Cui Y, Yan XH, Qi W, Yang Y, Wang KW, He Q, Li JB (2008) Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv Mater 20:452–456

    Article  Google Scholar 

  27. Li BX, Rong GX, Xie Y, Huang LF, Feng CQ (2006) Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg Chem 45:6404–6410

    Article  CAS  Google Scholar 

  28. Benguella B, Benaissa H (2002) Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies. Water Res 36:2463–2474

    Article  CAS  Google Scholar 

  29. Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS (2002) The role of sawdust in the removal of unwanted materials from water. J Hazard Mater 95:137–152

    Article  CAS  Google Scholar 

  30. Bhattacharyya KG, Gupta SS (2008) Adsorption of Fe(III), Co(II) and Ni(II) on ZrO-kaolinite and ZrO-montmorillonite surfaces in aqueous medium. Colloids Surf A 317:71–79

    Article  CAS  Google Scholar 

  31. Rengaraj S, Yeon KH, Kang SY, Lee JU, Kim KW, Moon SH (2002) Studies on adsorptive removal of Co(II), Cr(III) and Ni(II) by IRN77 cation-exchange resin. J Hazard Mater 92:185–198

    Article  CAS  Google Scholar 

  32. Marcussen H, Holm PE, Strobel BW, Hansen HCB (2009) Nickel sorption to goethite and montmorillonite in presence of citrate. Environ Sci Technol 43:1122–1127

    Article  CAS  Google Scholar 

  33. Wu CH (2007) Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes. J Colloid Interface Sci 311:338–346

    Article  CAS  Google Scholar 

  34. Pan G, Qin YW, Li XL, Hu TD, Wu ZY, Xie YN (2004) EXAFS studies on adsorption–desorption reversibility at manganese oxides–water interfaces I. Irreversible adsorption of zinc onto manganite (γ -MnOOH). J Colloid Interface Sci 271:28–34

    Article  CAS  Google Scholar 

  35. Li XL, Pan G, Qin YW, Hu TD, Wu ZY, Xie YN (2004) EXAFS studies on adsorption-desorption reversibility at manganese oxide-water interfaces II. Reversible adsorption of zinc on δ-MnO2. J Colloid Interface Sci 27:35–40

    Google Scholar 

  36. Hayes KF, Leckie JO (1987) Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. J Colloid Interface Sci 115:564–572

    Article  CAS  Google Scholar 

  37. Strathmann TJ, Myneni SCB (2005) Effect of soil fulvic acid on nickel(II) sorption and bonding at the aqueous-boehmite(γ-AlOOH) interface. Environ Sci Technol 39:4027–4034

    Article  CAS  Google Scholar 

  38. Takahashi Y, Minai Y, Ambe S, Makide Y, Ambe F (1999) Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique. Geochim Cosmochim Acta 63:815–836

    Article  CAS  Google Scholar 

  39. Abate G, Masini JC (2005) Influence of pH, ionic strength and humic acid on adsorption of Cd(II) and Pb(II) onto vermiculite. Colloids Surf A 262:33–39

    Article  CAS  Google Scholar 

  40. Tan XL, Chang PP, Fan QH, Zhou X, Yu SM, Wu WS, Wang XK (2008) Sorption of Pb(II) on Na-rectorite: effects of pH, ionic strength, temperature, soilhumic acid and fulvic acid. Colloids Surf A 328:8–14

    Article  CAS  Google Scholar 

  41. Yan WL, Bai RB (2005) Adsorption of lead and humic acid on chitosan hydrogel beads. Water Res 39:688–698

    Article  CAS  Google Scholar 

  42. Yang K, Xing BS (2009) Adsorption of fulvic acid by carbon nanotubes from water. Environ Pollut 157:1095–1100

    Article  CAS  Google Scholar 

  43. Christl I, Kretzschmar R (2001) Interaction of copper and fulvic acid at the hematite-water interface. Geochim Cosmochim Acta 65:3435–3442

    Article  CAS  Google Scholar 

  44. Xu D, Zhou X, Wang XK (2008) Adsorption and desorption of Ni2+ on Na-montmorillonite: effect of pH, ionic strength, fulvic acid, humic acid and addition sequences. Appl Clay Sci 39:133–141

    Article  CAS  Google Scholar 

  45. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  46. Kilpatrick M, Baker Jr, LL McKinney, Jr CD (1953) Studies of fast reactions which evolve gases. The Reaction of sodium-potassium alloy with water in the presence and absence of oxygen. J Phys Chem C 57:385–390

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Award Fund for Prominent Youth Scientists of Shandong Province of China (Project No. BS 2009DX014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mou, J., Wang, G., Shi, W. et al. Impact of environmental conditions on the sorption behavior of radionuclide 63Ni(II) onto hierarchically structured γ-MnO2 . J Radioanal Nucl Chem 292, 161–170 (2012). https://doi.org/10.1007/s10967-011-1391-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1391-5

Keywords

Navigation