A Bayesian method with empirically fitted priors for the evaluation of environmental radioactivity: application to low-level radioxenon measurements

Abstract

The decision that a given detection level corresponds to the effective presence of a radionuclide is still widely made on the basis of a classic hypothesis test. However, the classic framework suffers several drawbacks, such as the conceptual and practical impossibility to provide a probability of zero radioactivity, and confidence intervals for the true activity level that are likely to contain negative and hence meaningless values. The Bayesian framework being potentially able to overcome these drawbacks, several attempts have recently been made to apply it to this decision problem. Here, we present a new Bayesian method that, unlike the previous ones, presents two major advantages together. First, it provides an estimate of the probability of no radioactivity, as well as physically meaningful point and interval estimates for the true radioactivity level. Second, whereas Bayesian approaches are often controversial because of the arbitrary choice of the priors they use, the proposed method permits to estimate the parameters of the prior density of radioactivity by fitting its marginal distribution to previously recorded activity data. The new scheme is first mathematically developed. Then, it is applied to the detection of radioxenon isotopes in noble gas measurement stations of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    They may depend on other parameters as well, but in order to simplify the presentation, we retain the dependency in μ only. See [9] for a presentation of models with several unknown parameters.

References

  1. 1.

    Currie LA (1968) Anal Chem 335:586

    Article  Google Scholar 

  2. 2.

    ISO 11929-7 (2005) Determination of the detection limit and decision threshold for ionizing radiation measurements, part 7: fundamentals and general applications

  3. 3.

    Potter WE (1999) Health Phys 76(2):186

    Article  CAS  Google Scholar 

  4. 4.

    MARLAP Multi-agency radiological laboratory analytical protocols manual (2004) vol. 20: detection and quantification capabilities [http://mccroan.com/marlap.htm]

  5. 5.

    ISO 11929:2010(E) (2010) Determination of the characteristic limits (decision threshold, detection limit and limits of the confidence interval) for measurements of ionizing radiation—fundamentals and application, 1st edn

  6. 6.

    Zähringer M, Kirchner G (2008) Nucl Instrum Methods Phys Res A 594:400

    Article  Google Scholar 

  7. 7.

    Vivier A, Le Petit G, Pigeon B, Blanchard X (2009) J Radioanal Nucl Chem 282:743

    Article  CAS  Google Scholar 

  8. 8.

    Robert CP (2001) The Bayesian choice: from decision-theoretic motivations to computational implementation, 2nd edn. Springer, New York

    Google Scholar 

  9. 9.

    Leonard T, Hsu JSJ (1999) Bayesian methods: an analysis for statisticians and interdisciplinary researchers. Cambridge University Press, Cambridge

    Google Scholar 

  10. 10.

    Donnelly P (2005) Significance 2(1):46

    Article  Google Scholar 

  11. 11.

    CTBT. Text of Comprehensive Nuclear-Test-Ban Treaty (1996) See Web Page of the United Nations Office for Disarmament Affairs (UNODA), Multilateral Arms Regulation and Disarmament Agreements, CTBT [http://disarmament.un.org/TreatyStatus.nsf]

  12. 12.

    Hoffmann W, Kebeasy R, Firbas P (1999) Phys Earth Planet Interiors 113:5

    Article  Google Scholar 

  13. 13.

    Zähringer M, Becker A, Nikkinen M, Saey P, Wotawa G (2009) J Radioanal Nucl Chem 282:737

    Article  Google Scholar 

  14. 14.

    Fontaine JP, Pointurier F, Blanchard X, Taffary T (2004) J Environ Radioact 72:129

    Article  CAS  Google Scholar 

  15. 15.

    Le Petit G, Armand P, Brachet G, Taffary T, Fontaine JP, Achim P, Blanchard X, Piwowarczyk JC, Pointurier F (2008) J Radioanal Nucl Chem 276:391

    Article  Google Scholar 

  16. 16.

    Ringbom A, Larson T, Axelsson A, Elmgren K, Johansson C (2003) J Radioanal Nucl Chem A 508:542

    CAS  Google Scholar 

  17. 17.

    Dubasov YV, Popov YS, Prelovskii VV, Donets AY, Kazarinov NM, Mishurinskii VV, Popov VY, Rykov YM, Skirda NV (2005) Instrum Exp Tech 48:373

    Article  CAS  Google Scholar 

  18. 18.

    Schulze J, Auer M, Werzi R (2000) Appl Radiat Isot 53:23

    Article  CAS  Google Scholar 

  19. 19.

    Auer M, Axelsson A, Blanchard X, Bowyer TW, Brachet G, Bulowski I, Dubasov Y, Elmgren K, Fontaine JP, Harms W, Hayes JC, Heimbigner TR, McIntyre JI, Panisko ME, Popov Y, Ringbom A, Sartorius H, Schmid S, Schulze J, Schlosser C, Taffary T, Weiss W, Wernsperger B (2004) Appl Radiat Isot 60:863

    Article  CAS  Google Scholar 

  20. 20.

    Stocki TJ, Blanchard X, D’Amours R, Ungar RK, Fontaine JP, Sohier M, Bean M, Taffary T, Racine J, Tracy BL, Brachet G, Jean M, Meyerhof D (2005) J Environ Radioact 80:305

    Article  CAS  Google Scholar 

  21. 21.

    Saey PRJ, Schlosser C, Achim P, Auer M, Axelsson A, Becker A, Blanchard X, Brachet G, Cella L, De Geer L-E, Kalinowski MB, Le Petit G, Peterson J, Popov V, Popov Y, Ringbom A, Sartorius H, Taffary T, Zähringer M (2010) Pure Appl Geophys 167:499

    Article  Google Scholar 

  22. 22.

    Ringbom A, Elmgren K, Lindh K, Peterson J, Bowyer TW, Hayes JC, McIntyre JI, Panisko M, Williams R (2009) J Radioanal Nucl Chem 282:773

    Article  CAS  Google Scholar 

  23. 23.

    England TR, Rider BF (1993) Los Alamos National Laboratory, LA-UR-94-3106, ENDF-349

  24. 24.

    Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, New York

    Google Scholar 

  25. 25.

    Currie LA (2007) J Radioanal Nucl Chem 276:285

    Article  Google Scholar 

  26. 26.

    Heinrich J (2003) Pittfals of goodness-of-fit from likelihood. PHYSTAT2003, SLAC, Stanford, CA, September 8–11

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Rivals.

Appendix: Bayesian estimates for the proposed priors

Appendix: Bayesian estimates for the proposed priors

In order to lighten the notations, the a priori probability of zero activity P(H 0) is denoted by p 0 in the following results. According to (6), since f(x|μ) = 1/σ φ((x − μ)/σ), the a posteriori probability of H 0 is always of the form:

$$ P(H_{0} |x) = \frac{{\frac{{p_{0} }}{\sigma }\varphi \left( {\frac{x}{\sigma }} \right)}}{f(x)} $$
(17)

According to (7), the posterior density of μ is always of the form:

$$ f(\mu |x) = P(H_{0} |x)\delta_{0} (\mu ) + (1 - p_{0} )\frac{{\pi (\mu |H_{1} )}}{f(x)}\frac{1}{\sigma }\varphi \left( {\frac{x - \mu }{\sigma }} \right) $$
(18)

The marginal density f(x), the Bayesian point estimate (8), and the credibility interval (9) for μ are given below for the three priors.

Uniform prior

With the uniform prior (13), the marginal density is given by:

$$ f(x) = \frac{{p_{0} }}{\sigma }\varphi \left( {\frac{x}{\sigma }} \right) + \frac{{1 - p_{0} }}{d}\left( {\Upphi \left( {\frac{x}{\sigma }} \right) - \Upphi \left( {\frac{x - d}{\sigma }} \right)} \right) $$
(19)

Bayesian point estimate:

$$ \mu^{*} = \frac{{\sigma (1 - p_{0} )}}{d \times f(x)}\left( {\varphi \left( {\frac{x}{\sigma }} \right) - \varphi \left( {\frac{x - d}{\sigma }} \right)} \right) + x\left( {\Upphi \left( {\frac{x}{\sigma }} \right) - \Upphi \left( {\frac{x - d}{\sigma }} \right)} \right) $$
(20)

1 − γ credibility interval:

$$ \left\{ \begin{gathered} \mu^{ + } = x + \sigma \times \Upphi^{ - 1} \left( {\Upphi \left( {\frac{d - x}{\sigma }} \right) - \frac{\gamma }{2}\frac{d \times f(x)}{{1 - p_{0} }}} \right) \\ \mu^{ - } = x + \sigma \times \Upphi^{ - 1} \left( {\Upphi \left( {\frac{d - x}{\sigma }} \right) - \left( {1 - \frac{\gamma }{2}} \right)\frac{d \times f(x)}{{1 - p_{0} }}} \right) \, {\text{if}} \, P(H_{0} |x) < \frac{\gamma }{2},\,{\text{else}}\,\mu^{ - } = 0 \\ \end{gathered} \right. $$
(21)

Exponential prior

Marginal density with the exponential prior (14):

$$ f(x) = \frac{{p_{0} }}{\sigma }\varphi \left( {\frac{x}{\sigma }} \right) + \frac{{1 - p_{0} }}{\tau }\exp \left( {\frac{{\sigma^{2} }}{{2\tau^{2} }} - \frac{x}{\tau }} \right)\Upphi \left( {\frac{{x - \frac{{\sigma^{2} }}{\tau }}}{\sigma }} \right) $$
(22)

Bayesian point estimate:

$$ \mu^{*} = \frac{{(1 - p_{0} )}}{\sigma \times \tau }\frac{{\exp \left( {\frac{{\sigma^{2} }}{{2\tau^{2} }} - \frac{x}{\tau }} \right)}}{f(x)}\left( {\sigma^{2} \varphi \left( {\frac{{x - \frac{{\sigma^{2} }}{\tau }}}{\sigma }} \right) + \left( {x - \frac{{\sigma^{2} }}{\tau }} \right)\Upphi \left( {\frac{{x - \frac{{\sigma^{2} }}{\tau }}}{\sigma }} \right)} \right) $$
(23)

1 − γ credibility interval:

$$ \left\{ \begin{gathered} \mu^{ + } = x - \frac{{\sigma^{2} }}{\tau } + \sigma \times \Upphi^{ - 1} \left( {1 - \frac{\gamma }{2}\frac{\tau \times f(x)}{{1 - p_{0} }}\exp \left( {\frac{x}{\tau } - \frac{{\sigma^{2} }}{{2\tau^{2} }}} \right)} \right) \hfill \\ \mu^{ - } = x - \frac{{\sigma^{2} }}{\tau } + \sigma \times \Upphi^{ - 1} \left( {1 - \left( {1 - \frac{\gamma }{2}} \right)\frac{\tau \times f(x)}{{1 - p_{0} }}\exp \left( {\frac{x}{\tau } - \frac{{\sigma^{2} }}{{2\tau^{2} }}} \right)} \right){\text{ if}}\,P(H_{0} |x) < \frac{\gamma }{2},\,{\text{else }}\mu^{ - } = 0 \hfill \\ \end{gathered} \right. $$
(24)

Half-Gaussian prior

Let us define ω according to:

$$ \frac{1}{{\omega^{2} }} = \frac{1}{{\lambda^{2} }} + \frac{1}{{\sigma^{2} }} $$

Marginal density with the half-Gaussian prior (15):

$$ f(x) = \frac{{p_{0} }}{\sigma }\varphi \left( {\frac{x}{\sigma }} \right) + \frac{{(1 - p_{0} )2\omega }}{\sigma \lambda }\varphi \left( {\frac{x}{\lambda }} \right)\Upphi \left( {\frac{\omega }{{\sigma^{2} }}x} \right) $$
(25)

Bayesian point estimate:

$$ \mu^{*} = \frac{{2(1 - p_{0} )}}{\lambda \sigma f(x)}\varphi \left( {\frac{x}{\lambda }} \right)\left( {\frac{{\omega^{3} x}}{{\sigma^{2} }}\Upphi \left( {\frac{\omega x}{{\sigma^{2} }}} \right) + \omega^{2} \varphi \left( {\frac{\omega x}{{\sigma^{2} }}} \right)} \right) $$
(26)

1 − γ credibility interval:

$$ \left\{ \begin{array}{ll} \mu^{ + } = \frac{{\omega^{2} }}{{\sigma^{2} }}x + \omega \times \Upphi^{ - 1} \left( {1 - \frac{\gamma }{2}\frac{\lambda \times \sigma \times f(x)}{{2\omega (1 - p_{0} )\varphi \left( {x/\lambda } \right)}}} \right) \\ {\mu^{ - }}= \frac{{\omega^{2} }}{{\sigma^{2} }}x + \omega \times \Upphi^{ - 1} \left( {1 - \left( {1 - \,\frac{\gamma }{2}} \right)\frac{\lambda \times \sigma \times f(x)}{{2\omega (1 - p_{0} )\varphi \left( {x/\lambda } \right)}}} \right){\text{ if }}P(H_{0} |x) < \gamma /2,{\text{ else }}{\mu^{ - }} = 0 \\ \end{array} \right. $$
(27)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rivals, I., Fabbri, C., Euvrard, G. et al. A Bayesian method with empirically fitted priors for the evaluation of environmental radioactivity: application to low-level radioxenon measurements. J Radioanal Nucl Chem 292, 141–153 (2012). https://doi.org/10.1007/s10967-011-1390-6

Download citation

Keywords

  • A priori knowledge
  • Bayesian statistics
  • CTBT
  • Environmental monitoring
  • Fitted prior
  • Radioactivity detection
  • Radioactive xenon