Skip to main content
Log in

Sorption/desorption of radionickel on/from Na-montmorillonite: kinetic and thermodynamic studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, Na-montmorillonite was used as a novel adsorbent for the sorption of Ni(II) from aqueous solutions. The sorption and desorption of Ni(II) on Na-montmorillonite was investigated as the function of pH, ionic strength, Ni(II) concentrations and temperature. The results indicated that the sorption of Ni(II) on Na-montmorillonite was strongly dependent on pH, ionic strength and temperature. The sorption of Ni(II) increases slowly from 22.1 to 51.4% at pH range 2–6.5, abruptly at pH 6.5–9, and at last maintains high level with increasing pH at pH > 9 in 0.1 mol/L NaNO3 solutions. The Ni(II) kinetic sorption on Na-montmorillonite was fitted by the pseudo-second-order model better than by the pseudo-first-order model and the experimental data implies that Ni(II) sorption on montmorillonite were mainly controlled by the film diffusion mechanism. The Langmuir, Freundlich and D–R models were used to simulate the sorption data at three different temperatures (298.15, 318.15 and 338.15 K) and the results indicated that Langmuir model simulates the experimental data better than Freundlich and D–R models. The sorption–desorption isotherm of Ni(II) on montmorillonite suggested that the sorption is irreversible. The irreversible sorption of Ni(II) on montmorillonite indicates that montmorillonite can be used to pre-concentration and solidification of Ni(II) from large volumes of solution and to storage Ni(II) ions stably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tan XL, Fang M, Wang XK (2010) Molecules 15:8431–8468

    Article  CAS  Google Scholar 

  2. El-Shazly EAA, Sheha RR, Someda HH (2006) J Radioanal Nucl Chem 268:255–260

    Article  CAS  Google Scholar 

  3. Chang P, Yu S, Chen T, Ren A, Chen C, Wang X (2007) J Radioanal Nucl Chem 274:153–160

    Article  CAS  Google Scholar 

  4. Hu J, Chen CL, Sheng GD, Li JX, Chen YX, Wang XK (2010) Radiochim Acta 98:421–429

    Article  CAS  Google Scholar 

  5. Wang XK, Chen CL, Zhou X, Tan XL, Hu WP (2005) Radiochim Acta 93:273–278

    Article  CAS  Google Scholar 

  6. Ren XM, Wang SW, Yang ST, Li JX (2010) J Radioanal Nucl Chem 283:253–259

    Article  CAS  Google Scholar 

  7. Lu SS, Guo ZQ, Zhang CC, Zhang SW (2011) J Radioanal Nucl Chem 287:621–628

    Article  CAS  Google Scholar 

  8. Chen CL, Wang XK, Nagatsu M (2009) Environ Sci Technol 43(7):2362–2367

    Article  CAS  Google Scholar 

  9. Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) J Phys Chem B 113(4):860–864

    Article  CAS  Google Scholar 

  10. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Environ Sci Technol 43(15):5776–5782

    Article  CAS  Google Scholar 

  11. Shao DD, Xu D, Wang SW, Fan QH, Wu WS, Dong YH, Wang XK (2009) Sci China B 52:362–371

    Article  CAS  Google Scholar 

  12. Khraisheh MAM, Al-Degs YS, Mcminn WAM (2004) Chem Eng J 99:177–184

    Article  CAS  Google Scholar 

  13. Echeverria J, Indurain J, Churio E, Garrido J (2003) Colloids Surf A 218:175–187

    Article  CAS  Google Scholar 

  14. Zhang J, Li A, Wang A (2006) Carbohydr Polym 65:150–158

    Article  CAS  Google Scholar 

  15. Yang X, Yang SB, Yang ST, Hu J, Tan XL, Wang XK (2011) Chem Eng J 168:86–93

    Article  CAS  Google Scholar 

  16. Sari A, Tuzen M, Citak D, Soylak M (2007) J Hazard Mater 149:283–291

    Article  CAS  Google Scholar 

  17. Fišera O (2006) J Phys 56:557–563

    Google Scholar 

  18. Chen L, Gao B, Lu SH, Dong YH (2011) J Radioanal Nucl Chem 288:851–858

    Article  CAS  Google Scholar 

  19. Hu J, Xu D, Chen L, Wang XK (2009) J Radioanal Nucl Chem 279:701–708

    Article  CAS  Google Scholar 

  20. Song XP, Wang SW, Chen L, Zhang ML, Dong YH (2009) Appl Radiat Isot 67:1007–1012

    Article  CAS  Google Scholar 

  21. Tan XL, Hu J, Zhou X, Yu SM, Wang XK (2008) Radiochim Acta 96:487–495

    Article  CAS  Google Scholar 

  22. Fan QH, Shao DD, Lu Y, Wu WS, Wang XK (2009) Chem Eng J 150:188–195

    Article  CAS  Google Scholar 

  23. Hu J, Shao DD, Chen CL, Sheng GD, Li JX, Wang XK, Nagatsu M (2010) J Phys Chem B 114:6779–6785

    Article  CAS  Google Scholar 

  24. Ho YS, McKay G (1998) IChemE 76:183–191

    CAS  Google Scholar 

  25. Taylor HA, Thon N (1952) J Am Chem Soc 74:4169–4173

    Article  CAS  Google Scholar 

  26. Chen H, Wang AQ (2009) J Hazard Mater 165:223–231

    Article  CAS  Google Scholar 

  27. Weber WJ Jr, Morriss JC (1963) J Sanit Eng Div Am Soc Civ Eng 89:31–60

    Google Scholar 

  28. Reichenberg D (1953) J Am Chem Soc 75:589–597

    Article  CAS  Google Scholar 

  29. Wang SB, Li HT, Xu LY (2006) J Colloid Interface Sci 295:71–78

    Article  CAS  Google Scholar 

  30. Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK (2009) Microporous Mesoporous Mater 123:1–9

    Article  CAS  Google Scholar 

  31. Tan XL, Chang PP, Fan QH, Zhou X, Yu SM, Wu WS, Wang XK (2008) Colloids Surf A 328:8–14

    Article  CAS  Google Scholar 

  32. Tan XL, Fan QH, Wang XK, Grambow B (2009) Environ Sci Technol 43(9):3115–3121

    Article  CAS  Google Scholar 

  33. Hu BW, Cheng W, Zhang H, Sheng GD (2010) J Radioanal Nucl Chem 285:389–398

    Article  CAS  Google Scholar 

  34. Tan LQ, Jin YL, Chen J, Wu J, Cheng XC, Feng LD (2011) J Radioanal Nucl Chem 289:601–610

    Article  CAS  Google Scholar 

  35. Yang ST, Zhao DL, Zhang H, Lu SS, Chen L, Yu XJ (2010) J Hazard Mater 183:632–640

    Article  CAS  Google Scholar 

  36. Yang ST, Li JX, Lu Y, Chen YX, Wang XK (2009) Appl Radiat Isot 67:1600–1608

    Article  CAS  Google Scholar 

  37. Sheng GD, Wang SW, Hu J, Lu Y, Li JX, Dong YH, Wang XK (2009) Colloids Surf A 339:59–166

    Article  Google Scholar 

  38. Chen H, Zhao YG, Wang AQ (2007) J Hazard Mater 149:346–354

    Article  CAS  Google Scholar 

  39. Xu D, Zhou X, Wang XK (2008) Appl Clay Sci 39:133–141

    Article  CAS  Google Scholar 

  40. Yang ST, Li JX, Shao DD, Hu J, Wang XK (2009) J Hazard Mater 166:109–116

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by Jiangsu Natural Science Foundation (BK2009664).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, T., Tan, L. Sorption/desorption of radionickel on/from Na-montmorillonite: kinetic and thermodynamic studies. J Radioanal Nucl Chem 292, 103–112 (2012). https://doi.org/10.1007/s10967-011-1377-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1377-3

Keywords

Navigation