Skip to main content
Log in

Development, relevance, and applications of “atom-at-a-time” techniques

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A brief history of the development and some of the first uses of “atom-at-a-time” techniques to investigate the chemical and nuclear properties of the actinide and transactinide elements are presented. The currently known transactinides (all elements with Z > 103) were discovered using physical (nuclear) techniques rather than chemical separation techniques because of their short half-lives and low production rates and the difficulty in accurately predicting chemical properties of the heaviest elements because of relativistic effects. Some of the constraints on systems suitable for such studies and whether these tracer-scale results can be extended to the macro-scale are discussed. The relevance and importance of the methods and their potential for application to some current problems such as nuclear forensics and proliferation and environmental concerns are considered. The value of graduate research utilizing such techniques in helping to attract and educate the next generation of nuclear scientists is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2

Similar content being viewed by others

References

  1. Nobel Lectures (1964) Chemistry 1942–1962. Elsevier, Amsterdam

    Google Scholar 

  2. Kucera J (2007) J Radioanal Nucl Chem 273:273

    Article  CAS  Google Scholar 

  3. Greenberg RR (2008) J Radioanal Nucl Chem 278:231

    Article  CAS  Google Scholar 

  4. Lindstrom RM (2009) J Radioanal Nucl Chem 5:9

    Google Scholar 

  5. Hofmann S et al (1996) Z Phys A 354:229

    CAS  Google Scholar 

  6. Hofmann S et al (2002) Eur Phys J A 14:147

    Article  CAS  Google Scholar 

  7. Tatsumi K, Corish J (2010) Pure Appl Chem 82:753

    Article  CAS  Google Scholar 

  8. Ghiorso A, Harvey BG, Choppin GR, Thompson SG, Seaborg GT (1955) Phys Rev 98:1518

    Article  CAS  Google Scholar 

  9. Choppin GR, Silva RJ (1956) J Inorg Nucl Chem 3:153

    Article  CAS  Google Scholar 

  10. Hoffman DC (1993) Radiochim Acta 61:123–129

    CAS  Google Scholar 

  11. Fields PR et al (1957) Phys Rev 107:1460

    Article  CAS  Google Scholar 

  12. Hoffman DC, Ghiorso A, Seaborg GT (2000) The transuranium people: the inside story. Imperial College Press, London

    Book  Google Scholar 

  13. Maly J et al (1968) Science 160:1114

    Article  CAS  Google Scholar 

  14. Silva RJ, Sikkeland T, Nurmia M, Ghiorso A, Hulet EK (1969) J Inorg Nucl Chem 31:3405

    Article  CAS  Google Scholar 

  15. Silva RJ, Sikkeland T, Nurmia M, Ghiorso A (1970) Inorg Nucl Chem Lett 6:733

    Article  CAS  Google Scholar 

  16. Hoffman DC et al (1988) J Radioanal Nucl Chem 124:135–144

    Article  CAS  Google Scholar 

  17. Brüchle W et al (1988) Inorg Chim Acta 146:267

    Article  Google Scholar 

  18. Pyykkö P (1988) Chem Rev 88:563

    Article  Google Scholar 

  19. Pershina V, Fricke B (1996) J Phys Chem 100:8748

    Article  CAS  Google Scholar 

  20. Pershina V (1996) Chem Rev 96:1977

    Article  CAS  Google Scholar 

  21. Pershina V, Hoffman DC (2003) The chemistry of the heaviest elements Chap. 3. In: Kaldor U, Wilson S (eds) Theoretical chemistry and physics of heavy and superheavy elements. Kluwer Academic Publishers, Dordrecht, pp 55–114

    Google Scholar 

  22. Keller OL Jr (1984) Radiochim Acta 37:169

    CAS  Google Scholar 

  23. Wierczinski B, Hoffman DC (1996) In: Sood DD, Reddy AVR, Pujari PK (eds) Frontiers in nuclear chemistry. IANCS, India, pp 171–191

    Google Scholar 

  24. Ghiorso A et al (1974) Phys Rev Lett 33:1490

    Article  CAS  Google Scholar 

  25. Gregorich KE et al (1994) Phys Rev Lett 72:1423

    Article  CAS  Google Scholar 

  26. Hoffman DC (1998) J Radioanal Nucl Chem 239:7–18

    Article  Google Scholar 

  27. Hoffman DC, Lee DM, Pershina V (2006) In: Vertes A, Klencsar Z (eds) The chemistry of the actinide and transactinide elements. Springer, Dordrecht, pp 1652–1752

    Chapter  Google Scholar 

  28. Stavsetra L et al (2005) Nucl Instrum Methods A 543:509–516

    Article  CAS  Google Scholar 

  29. Düllmann CE et al (2010) Phys Rev Lett 104:252701

    Article  Google Scholar 

  30. Adloff J-P, Guillaumont R (1993) Fundamentals of radiochemistry. CRC Press, Boca Raton

    Google Scholar 

  31. Trubert D, LeNaour C (2003) In: Schaedel M (ed) The chemistry of superheavy elements. Kluwer Academic Publishers, Dordrecht, pp 95–116

    Google Scholar 

  32. May M et al (2007) Nuclear forensics, role, state of the art, and program needs Report. Joint working group APS and AAAS, Washington, DC

    Google Scholar 

  33. Carnesale A et al (2010) Nuclear forensics, a capability at risk (abbreviated version). NAS Press, Washington, DC

    Google Scholar 

  34. Service RF (2011) Science 331:277–279

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darleane C. Hoffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, D.C. Development, relevance, and applications of “atom-at-a-time” techniques. J Radioanal Nucl Chem 291, 5–11 (2012). https://doi.org/10.1007/s10967-011-1361-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1361-y

Keywords

Navigation