Skip to main content
Log in

PGAA metals analysis in tailings in Zaida abandoned mine, high Moulouya, Morocco

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The basin of Moulouya Oued is a region where mining industry has been developed early in the 20th century. As a consequence, residues generated from past mining activities over the years have been dumped as piles of tailings. Zaïda is one of the most affected region in this basin because of lead mine exploitation for long time. The aim of this study is to determine the amount of trace elements and the contamination of the river sediments. Analysis of collected samples has been achieved using the prompt gamma activation analysis method. The samples, in form of powders, were enclosed in Teflon sheets. The spectra were analyzed using HYPERMET PC software and the chemical composition is calculated using an Excel-macro that provides the concentrations as molar and weight percentages, as well as the corresponding masses of the oxides. The validation of the analytical method is demonstrated with the analysis of a reference material. The results show that the distribution of the studied metals (Pb, Zn, Cu, Cd, Cr Ni, and As) in the basin is dependent on location with a very significant contamination by Pb, Zn, Cu, Cd, Cr, and Ni close to the lead mine sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Couillard D, Chartier M, Mercier G (1994) Etude de l’enlèvement du Cd, Cu, Mn et Zn par solubilisation biologique fortement contaminés. Rev des Sci de l’Eau 7:251–268

    CAS  Google Scholar 

  2. Tessier A, Campbell PGC, Bisson M (1980) Trace metal speciation in the Yamaska and St Francois Rivers (Quebec). Can J Earth Sci 17:90–105

    Article  CAS  Google Scholar 

  3. Luoma SN (1989) Can we determine the biological availability of sediment-bound trace elements? Hydrobiologia 176(177):379–396

    Article  Google Scholar 

  4. Wen X, Du Q, Tang H (1998) Surface complexation model for the heavy metal adsorption on natural sediment. Environ Sci Technol 32:870–875

    Article  CAS  Google Scholar 

  5. Campbell PGC, Lewis AG, Chapman PM, Crowder AA, Feltcher NK, Imber B, Luoma SN, Stokes PM, Winfrey M (1988) Biologically available metals in sediments. NRCC 27694. National research Council of Canada, Ottawa, p 298

  6. Shea D (1988) Developing national sediment quality criteria. Environ Sci Technol 22:1261–1656

    Article  Google Scholar 

  7. Couillard D (1987) Qualité des sédiments en suspension et fond du système Saint-Laurent (Canada). J Hydrol Sci 32:445–467

    Article  CAS  Google Scholar 

  8. Lee CG, Chon HT, Jung MC (2001) Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea. Appl Geochem J 16:1377–1386

    Google Scholar 

  9. Thomas JFA (1980) Soil contamination at Shipham-report on studies completed in the village and advice to residents. Ministry of Agriculture, Fisheries and Food, London

    Google Scholar 

  10. Matthews H (1982) The distribution of cadmium and associated elements in the soil-plant system at sites in Britain contaminated by mining, smelting and metal-rich bedrock. PhD Thesis. University of London

  11. Saidi N (2004) Le bassin versant de la Moulouya: pollution par les métaux lourds et essais de phytoremédiation. PhD Thesis. Faculty of Sciences, University Mohamed V, Rabat, Morocco

  12. Thornton I (1980) Geochemical aspects of heavy metal pollution and agriculture in England and Wales. Reference Book, Ministry of Agriculture, Fisheries and Food No. 326 pp 105–125

  13. Li X, Thornton I (1993) Multi-element contamination of soils and plants in old mining areas, U.K. Appl Geochem (suppl no. 2):51–56

  14. Jung MC, Thornton I (1996) Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Appl Geochem 11:53–59

    Article  CAS  Google Scholar 

  15. Benisse R, Labat M, El Asli A, Bahada F, Qatibi A (2004) Rhizosphere bacterial populations of metallophyte plants in heavy metal-contaminated soils from mining areas in semiarid climate. World J Microbiol Biotechnol 20:759–766

    Article  Google Scholar 

  16. Ye ZH, Baker AJM, Willis AJ (1997) Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytol 136:469–480

    Article  CAS  Google Scholar 

  17. Fuge R, Pearce FM, Pearce NJG, Perkins WT (1993) Geochemistry of Cd in the secondary environment near abandoned metalliferous mines. Appl Geochem 2:29–35

    Article  CAS  Google Scholar 

  18. Dudka S, Piotrowska M, Chlopeckca A, Witek T (1995) Trace metal contamination of soils and crops plants by the mining and industry in Upper Silesia, south Poland. J Geochem Explor 5:237–250

    Article  Google Scholar 

  19. Jung MC (2001) Heavy metal contamination of soils and waters in and around the Imcheon Au–Ag mine, Korea. Appl Geochem 16:1369–1375

    Article  CAS  Google Scholar 

  20. Bouabdli A, Saidi N, El Founti L, Leblanc M (2004) Impact de la mine d’Aouli sur les eaux et les sédiments de l’Oued Moulouya (Maroc). Bull de la Société D’hist Naturelle de Toulouse 140:27–33

    Google Scholar 

  21. El Hachimi M (2007) Les districts miniers Aouali-Mibladen-Zaïda, abandonnés dans la Haute Moulouya (Maroc). Ph D Thesis. Faculty of Sciences, University Ibn Tofaïl, Kenitra

  22. Zs Révay (2009) Determining elemental composition using prompt γ activation analysis. Anal Chem 81:6851–6859

    Article  Google Scholar 

  23. Révay Zs, Belgya T, Ember PP, Molnár GL (2001) Recent developments in HYP ERMET PC. J Radioanal Nucl Chem 248(2):401–405

    Article  Google Scholar 

  24. Révay Zs, Firestone RB, Belgya T, Molnár GL (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publishers, Dordrecht, pp 173–366

    Google Scholar 

  25. Bowen HJM (1979) Environmental chemistry of elements. Academic Press, New York, pp 49–62

    Google Scholar 

  26. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  27. HSDB (2003) National library of medicine. htpp://www.toxnet.nlm.nih.gov

  28. CE (1999) Risk assessment for zinc metal. Part 2: human health. European Commission, Brussels

    Google Scholar 

  29. CE (2000) European Union, RB26005 env

  30. Molénat N, Holeman M, Pinel R (2000) L’arsenic, polluant de l’environnement: origine, distribution, biotransformation. L’Actual Chim 232:12–23

    Google Scholar 

  31. Boust D (1981) Métaux traces dans l’estuaire de la seine et ses abords. Thèse de 3ème cycle. Caen University, Caen, p 187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tahri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bounakhla, M., Embarch, K., Tahri, M. et al. PGAA metals analysis in tailings in Zaida abandoned mine, high Moulouya, Morocco. J Radioanal Nucl Chem 291, 129–135 (2012). https://doi.org/10.1007/s10967-011-1321-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1321-6

Keywords

Navigation