Skip to main content
Log in

Neutron activation analysis for assessing chemical composition of dry dog foods

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Brazil holds the second largest population of domestic dogs in the world, with 33 million dogs, only behind the United States. The annual consumption of dog food in the country is 1.75 million tons, corresponding to the World’s sixth in trade turnover. Dog food is supposed to be a complete and balanced diet, formulated with high quality ingredients. All nutrients and minerals required for an adequate nutrition of dogs are added to the formulation to ensure longevity and welfare. In this context, the present study aimed at assessing the chemical composition of dry dog foods commercialized in Brazil. Thirty-four samples were acquired in the local market of Piracicaba and analyzed by instrumental neutron activation analysis (INAA) to determine the elements As, Br, Ca, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Se, U, and Zn. In general, the concentrations of Ca, Fe, K, Na, and Zn complied with the values required by the Association of American Feed Control Officials (AAFCO). To evaluate the safety of dog food commercialized in Brazil, further investigation is necessary to better understand the presence of toxic elements found in this study, i.e. Sb and U. INAA was useful for the screening analysis of different types and brands of dry dog foods for the determination of both essential and toxic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Romanini C (2010) Veja Mag 43:141–146

    Google Scholar 

  2. AnfalPet (2010) Pet market. http://anfalpet.org.br. Accessed 14 Jul 2010

  3. Alltech (2011) Pet nutrition and health. http://www.alltech.com. Accessed 4 Feb 2011

  4. Thompson A (2008) Top Companion Anim Med 23:127–132

    Article  Google Scholar 

  5. Chandler ML (2008) Top Companion Anim Med 23:148–153

    Article  Google Scholar 

  6. Nunes RV, Rostagno HS, Albino LFT, Gomes PC, Toledo RS (2001) Rev Bras Zootec 30:785–793

    Article  Google Scholar 

  7. Girio TMS (2007) MSc Dissertation, Universidade Estadual Paulista, São Paulo, p 45 (in Portuguese)

  8. Alvarado CA, Hodgkinson SM, Alomar D, Boroschek D (2008) Arq Bras Med Vet Zootec 60:218–226

    Article  CAS  Google Scholar 

  9. Neves MCP (2006) Perigos químicos nos alimentos. Embrapa Agrobiologia, Seropédica

    Google Scholar 

  10. Custódio DP, Brandstetter EV, Oliveira IP, Oliveira LC, Santos KJG, Machado OF, Araujo AA (2005) Rev Eletr Facul Montes Belos 1:131–147

    Google Scholar 

  11. Buchanan R (2010) Food safety challenges facing the pet food industry. In: Waltham International Nutritional Sciences Symposium Abstract Book. University of Cambridge, Cambridge

  12. Atkins P, Ernyei L, Driscoll W, Obenauf R, Thomas R (2011) Spectroscopy 26:46–56

    CAS  Google Scholar 

  13. Duran A, Tuzen M, Soylak M (2010) Food Chem Toxicol 48:2833–2837

    Article  CAS  Google Scholar 

  14. Association of Official Analytical Chemists—AOAC (2002) Official methods of analysis, 18th edn. AOAC, Washington DC

  15. França EJ, De Nadai Fernandes EA, Bacchi MA (2003) J Radioanal Nucl Chem 257:113–115

    Article  Google Scholar 

  16. Bacchi MA, Fernandes EAN, Oliveira H (2003) J Radioanal Nucl Chem 257:577–582

    Article  CAS  Google Scholar 

  17. Ministry of Agriculture, Livestock and Food Supply—MAPA (2002) Instruction n° 08. MAPA, Brazil, 11 Oct 2002

  18. Association of American Feed Control Officials—AAFCO (2008) Dog food nutrient profile. AAFCO, Arizona

  19. Feuer D (2006) Your dog’s nutritional needs. National Academy of Sciences, Washington

    Google Scholar 

  20. Peterson J, MacDonell M, Haroun L, Monette F(2007) Radiological and chemical fact sheets to support health risk analyses for contaminated areas. Argonne National Laboratory, Illinois

  21. Schoulten NA, Teixeira AS, Bertechini AG, Freitas RTF, Conte AJ, Silva HO (2002) Ciênc Agrotecnol 26:1313–1321

    CAS  Google Scholar 

  22. Dobenecker B, Kienzle E (2010) Breed differences of calcium and phosphorus metabolism in growing dogs. In: Waltham International Nutritional Sciences Symposium Abstract Book. University of Cambridge, Cambridge

  23. Carciofi AC, Vasconcellos RS, Borges NC, Moro JV, Prada F, Fraga VO (2006) Arq Bras Med Vet Zootec 58:421–426

    Article  Google Scholar 

  24. Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment. Cambridge University Press, Cambridge

    Google Scholar 

  25. MacDonald RS (2000) J Nutr 130:1500S–1508S

    CAS  Google Scholar 

  26. Jamikorn U, Preedapattarapong T (2008) Thail J Vet Med 38:9–16

    Google Scholar 

  27. Kastenmayer P, Czarnecki-Maulden GL, King W (2002) J Nutr 132:1670S–1672S

    CAS  Google Scholar 

  28. Fernandes EAN (1993) J Radioanal Nucl Chem 168:41–46

    Article  CAS  Google Scholar 

  29. Yu S, Wedekind KJ, Kirk CA, Nachreiner RF (2006) J Anim Physiol Anim Nutr 90:146–151

    Article  CAS  Google Scholar 

  30. Markert B (1998) In: Schüürmann G, Markert B (eds) Ecotoxicology. Wiley, New York

  31. Committee on Minerals, Toxic Substances in Diets, Water for Animals, National Research Council (2005) Mineral tolerance of animals. National Academies Press, Washington

    Google Scholar 

  32. Subcommittee on Dog, Cat Nutrition, Committee on Animal Nutrition, National Research Council (2006) Nutrient requirements of dogs and cats. National Academies Press, Washington

    Google Scholar 

  33. Crispino CC (2007) MSc Dissertation, Universidade Federal de São Carlos, São Carlos, p 95 (in Portuguese)

  34. European Union—EC (2002) Directive 2002/32/EC of the European Parliament and of the Council. European Union, Brussels, 7 May 2002

  35. Atkins P, Ernyei L, Driscoll W, Obenauf R, Thomas R (2011) Spectroscopy 26:42–59

    CAS  Google Scholar 

  36. Teruya CM (1999) MSc Dissertation, Universidade de São Paulo, São Paulo, p 90 (in Portuguese)

  37. Smichowski P (2008) Talanta 75:2–14

    Article  CAS  Google Scholar 

  38. National System of Sanitary Surveillance (2010) Resolution RDC nº 52. http://www.nbn.gov.au/. Accessed 26 Nov 2010

  39. Batista BL (2009) MSc Dissertation, Universidade de São Paulo, São Paulo, p 77 (in Portuguese)

  40. Avelar AC, Ferreira WM, Menezes MABC (2007) Rev Saude Ambiente 8:37–42

    Google Scholar 

  41. United States Environmental Protection Agency (2010) Understanding radiation in your life, your world. http://www.epa.gov/radiation/radionuclides/uranium.html. Accessed 9 Feb 2011

Download references

Acknowledgments

The authors are thankful to The State of São Paulo Research Foundation—FAPESP for financial support (process 10/52425-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Elias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elias, C., De Nadai Fernandes, E.A. & Bacchi, M.A. Neutron activation analysis for assessing chemical composition of dry dog foods. J Radioanal Nucl Chem 291, 245–250 (2012). https://doi.org/10.1007/s10967-011-1285-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1285-6

Keywords

Navigation