Skip to main content
Log in

Bioaccumulation pattern of lanthanides in pteridophytes and magnoliophytes species from Atlantic Forest

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The availability of chemical elements for plants is mainly dependent on the nature of the soil and characteristics of each species. The transfer factors of lanthanides from the soil to the tree leaves of the Atlantic Forest, Brazil, were calculated for one fern species (Alsophila sternbergii—Pteridophyta division) and four magnoliophytes species (Bathysa australis, Euterpe edulis, Garcinia gardneriana and Guapira opposita—Magnoliophyta division) obtained in two areas of Serra do Mar State Park and collected in two different seasons. Samples were analyzed by instrumental neutron activation analysis (INAA). The soil-to-plant transfer factor (TF = Cplant:Csoil) in magnoliophytes species was correlated to the mass fraction of lanthanides in the soil, described by a exponential model (TF = a.C −bsoil ). Despite the tree fern Alsophila sternbergii presented a hyperaccumulation of lanthanides, this species did not have a significant relationship between TF and mass fraction in soil. Results indicated that plants of Magnoliophyta division selected the input of lanthanides from the soil, while the same was not observed in Alsophila sternbergii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kabata-Pendias A (2001) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  2. Wyttenbach A, Furrer V, Schleppi P, Tobler L (1998) Plant Soil 199:267–273

    Article  CAS  Google Scholar 

  3. Xu XK, Zhu WZ, Wang ZJ, Witkamp GJ (2003) Plant Soil 252:267–277

    Article  CAS  Google Scholar 

  4. Chu HY, Zhu JG, Xie ZB, Li ZG, Cao ZH, Zeng Q, Lin XG (2002) J Rare Earth 20:158–160

    Google Scholar 

  5. Ozaki T, Enomoto S, Minai Y, Ambe S, Ambe F, Tominaga T (1997) J Radioanal Nucl Chem 217:117–124

    Article  CAS  Google Scholar 

  6. Wyttenbach A, Tobler L, Schleppi P, Furrer V (1998) J Radioanal Nucl Chem 231:101–106

    Article  CAS  Google Scholar 

  7. Fu FF, Akagi T, Shinotsuka K (1998) Biol Trace Elem Res 64:13–26

    Article  CAS  Google Scholar 

  8. Wei ZG, Yin M, Zhang X, Hong FS, Li B, Tao Y, Zhao GW, Yan CH (2001) Environ Pollut. doi:10.1016/S0269-7491(00)00240-2

  9. França EJ, Fernandes EAN, Bacchi MA (2003) J Radioanal Nucl Chem 257:113–115

    Article  Google Scholar 

  10. Bacchi MA, Fernandes EAN (2003) J Radioanal Nucl Chem 257:577–582

    Article  CAS  Google Scholar 

  11. ISO (2005) ISO 13528 statistical methods for use in proficiency testing by interlaboratory comparisons. ISO, Geneva

  12. Araujo ALL, Fernandes EAN, Bacchi EJ, França EJ (2011) Int J Environ Heal R 5:4–18. doi:10.1504/IJENVH.2011.039852

    Article  Google Scholar 

  13. Araujo ALL, Fernandes EAN, França EJ, Bacchi MA (2008) J Radioanal Nucl Chem 278:429–433

    Article  CAS  Google Scholar 

  14. França EJ (2006) PhD Thesis. University of São Paulo, Piracicaba. http://www.teses.usp.br/teses/disponiveis/91/91131/tde-17102006-170028/publico/ElvisFranca.pdf. Acessed 28 March 2011

  15. Wyttenbach A, Tobler L (2002) J Radioanal Nucl Chem 254:165–174

    Article  CAS  Google Scholar 

  16. Ferrari AA, França EJ, Fernandes EAN, Bacchi MA (2006) J Radioanal Nucl Chem 270:69–73

    Article  CAS  Google Scholar 

  17. Krauss M, Ch Wilcke W, Kobza J, Zech W (2002) J Plant Nutr Soil Sci 165:3–8

    Article  CAS  Google Scholar 

  18. Markert B (1987) Phytochemistry. doi:10.1016/S0031-9422(00)82463-2

  19. Tome FV, Rodriguez MPB, Lozano JC (2002) J Environ Radioact 65:161–175

    Article  Google Scholar 

  20. Wang G, Su MY, Chen YH, Lin FF, Luo D, Gao SF (2006) Environ Pollut 144:127–135. doi:10.1016/j.envpol.2005.12.023

    Article  CAS  Google Scholar 

  21. Chojnacka K, Chojnacki A, Gorecka H, Gorecki H (2005) Sci Total Environ 337:175–182. doi:10.1016/j.scitotenv.2004.06.009

    Article  CAS  Google Scholar 

  22. Lehnert M, Kottke I, Setaro S, Pazmino LF, Suarez JP, Kessler M (2009) Am Fern J 99(4):292–306. doi:10.1640/0002-8444-99.4.292

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to the State of São Paulo Research Foundation (FAPESP) and Coordination of Development of Higher-Level Staff (CAPES) for the financial support, and to IPEN/CNEN for the irradiation of samples in the nuclear research reactor IEA-R1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luis Lima de Araújo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Araújo, A.L.L., De Nadai Fernandes, E.A., Bacchi, M.A. et al. Bioaccumulation pattern of lanthanides in pteridophytes and magnoliophytes species from Atlantic Forest. J Radioanal Nucl Chem 291, 187–192 (2012). https://doi.org/10.1007/s10967-011-1283-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1283-8

Keywords

Navigation