Skip to main content
Log in

Determination of selenium in bread-wheat samples grown under a Se-supplementation regime in actual field conditions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Selenium is an essential micronutrient for humans and animals, yet it is deficient in at least one billion people worldwide. Plants and plant-derived products transfer the soil-uptaken selenium to humans; therefore, the cultivation of plants enriched in selenium can be an effective way to improve the selenium status on humankind. This paper focuses on determining the ability of bread wheat to accumulate selenium after supplementation. One of the methods for supplementing this element in plants is foliar application with selenium solutions. These supplemented crop of wheat samples—bread wheat; Triticum aestivum L.—were used to determine if there is an increase of selenium content in cereal grains by comparing them with cereals cultivated in 2009 and harvested in 2010 with no supplementation. The experiments were done using sodium selenate and sodium selenite at three different selenium concentrations: 4, 20 and 100 g per hectare. Total Se is assessed by cyclic neutron activation analysis (CNAA), through short irradiations on the fast pneumatic system (SIPRA) of the Portuguese Research Reactor (RPI-ITN). The short-lived nuclide 77mSe, that features a half-lifetime of 17.5 s, was used to determine the Se content in SIPRA. The experiment was successful, since the selenium concentration increased in the cropped grains and reached values up to 35 times the non-supplemented ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Clark LC, Cantor KP, Allaway WH (1991) Arch Environ Health 46:37–42

    Article  CAS  Google Scholar 

  2. Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr, Park HK, Sanders BB Jr, Smith CL, Taylor JR (1996) J Am Med Assoc 276:1957–1963

    Article  CAS  Google Scholar 

  3. Clark LC, Dalkin B, Krongrad A, Combs GF Jr, Turnbull BW, Slate EH, Witherington R, Herlong JH, Janosko E, Carpenter D, Borosso C, Falk S, Rounder J (1998) Br J Urol 81:730–734

    Article  CAS  Google Scholar 

  4. Combs GF Jr (2001) Br J Nutr 85:517–547

    Article  CAS  Google Scholar 

  5. Rayman MP (2002) Proc Nutr Soc 61:203–215

    Article  CAS  Google Scholar 

  6. Whanger PD (2004) Br J Nutr 91:11–28

    Article  CAS  Google Scholar 

  7. Combs GF Jr (2005) J Nutr 135:343–347

    CAS  Google Scholar 

  8. Stranges S, Marshall JR, Trevisan M, Natarajan R, Donahue RP, Combs GF Jr, Farinaro E, Clark LC, Reid ME (2006) Am J Epidemiol 163:694–699

    Article  Google Scholar 

  9. Burk RF, Hill KE (1993) Annu Rev Nutr 13:65–81

    Article  CAS  Google Scholar 

  10. Evenson JK, Sunde RA (1988) Proc Soc Exp Biol Med 187:169–180

    CAS  Google Scholar 

  11. Arthur JR (1999) Proc Nutr Soc 58:507–512

    CAS  Google Scholar 

  12. Brown KM, Arthur JR (2001) Public Health Nutr 4:593–599

    Article  CAS  Google Scholar 

  13. Rayman MP (2000) Lancet 356:233–241

    Article  CAS  Google Scholar 

  14. Lyons G, Stangoulis J, Graham R (2003) Nutr Res Rev 16:45–60

    Article  CAS  Google Scholar 

  15. Van Cauwenbergh R, Robberecht H, Van Vlaslaer V, Deelstra H (2004) J Trace Elem Med Biol 18:99–112

    Article  Google Scholar 

  16. Navarro-Alarcon M, Cabrera-Vique C (2008) Sci Total Environ 400:115–141

    Article  CAS  Google Scholar 

  17. Levander OA, Whanger PD (1996) J Nutr 126:2427S–2434S

    CAS  Google Scholar 

  18. Institute of Medicine–Food, Nutrition Board (2000) Dietary reference intakes for vitamin C, vitamin E, selenium and carotenoids. National Academy Press, Washington, DC

    Google Scholar 

  19. Yang GQ, Xia YM (1995) Biomed Environ Sci 8:187–201

    CAS  Google Scholar 

  20. National Health and Medical Research Council (2006) Nutrient reference values for Australia and New Zealand including recommended dietary intakes. Commonwealth of Australia, Canberra

    Google Scholar 

  21. Department of Health (1991) Dietary reference values for food energy and nutrients for the United Kingdom—Report on health and social subjects, No. 41. HMSO, London

    Google Scholar 

  22. Thomson CD (2004) Eur J Clin Nutr 58:391–402

    Article  CAS  Google Scholar 

  23. Oldfield JE (1999) Selenium world atlas. Selenium-Tellurium Development Association, Grimbergen

    Google Scholar 

  24. Reis MF, Holzbecher J, Martinho E, Chatt A (1990) Biol Trace Elem Res 26–27:629–635

    Article  Google Scholar 

  25. Ventura MG (2008) Studies for the evaluation of selenium levels in typical constituents of Portuguese diets. PhD thesis, Technical University of Lisbon, Lisboa

  26. Lorenz K, Lee VA, Jackel SS (1977) Crit Rev Food Sci 8:383–456

    Article  CAS  Google Scholar 

  27. Shewry PR, Halford NG (2002) J Exp Bot 53:947–958

    Article  CAS  Google Scholar 

  28. Lyons GH, Lewis J, Lorimer MF, Holloway RE, Brace DM, Stangoulis JCR, Graham RD (2004) Food Agr Environ 2:171–178

    Google Scholar 

  29. Welch RM, Graham RD (2004) J Exp Bot 55:353–364

    Article  CAS  Google Scholar 

  30. White PJ, Broadley MR (2005) Trends Plant Sci 10:586–593

    Article  Google Scholar 

  31. Graham RD, Welch RM, Saunders DA, Ortiz-Monasterio I, Bouis HE, Bonierbale M, de Haan S, Burgos G, Thiele G, Liria R, Meisner CA, Beebe SE, Potts MJ, Kadian M, Hobbs PR, Gupta RK, Twomlow S (2007) Adv Agron 92:1–74

    Article  CAS  Google Scholar 

  32. White PJ, Broadley MR (2009) New Phytol 182:49–84

    Article  CAS  Google Scholar 

  33. Hawkesford MJ, Zhao F-J (2007) J Cereal Sci 46:282–292

    Article  CAS  Google Scholar 

  34. Feekes W (1941) Versl Techn Tarwe Comm 12:523–888; 17:560–561 (in Dutch)

    Google Scholar 

  35. Large EG (1954) Plant Pathol 3:128–129

    Article  Google Scholar 

  36. Zadoks JC, Chang TT, Konzak CF (1974) Weed Res 14:415–421

    Article  Google Scholar 

  37. Galinha C (2011) Different radioanalytical techniques for assessing selenium in cereal samples. MSc thesis, Technical University of Lisbon, Lisboa (in Portuguese)

  38. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  39. Lyons GH, Judson GF, Ortiz-Monasterio I, Genc Y, Stangoulis JCR, Graham RD (2005) J Trace Elem Med Biol 19:75–82

    Article  CAS  Google Scholar 

  40. Lyons GH, Stangoulis JCR, Graham RD (2005) Plant Soil 270:179–188

    Article  CAS  Google Scholar 

  41. Statistics Portugal (2010) Statistical Yearbook of Portugal-2009. INE IP, Lisboa

    Google Scholar 

  42. Cornell University (2011) Cornell Guide for Integrated Field Crop Management. http://ipmguidelines.org. Accessed 09 Mar 2011

Download references

Acknowledgments

This work has been supported by the Portuguese Foundation for the Science and the Technology (Fundação para a Ciência e a Tecnologia—FCT; Portugal) through research contract PTDC/QUI/65618/2006. One of the authors (A.S.A.) thanks FCT Ciência 2008 Program. The authors are also indebted to one anonymous Reviewer for his/her constructive remarks and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galinha, C., Freitas, M.C., Pacheco, A.M.G. et al. Determination of selenium in bread-wheat samples grown under a Se-supplementation regime in actual field conditions. J Radioanal Nucl Chem 291, 231–235 (2012). https://doi.org/10.1007/s10967-011-1226-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1226-4

Keywords

Navigation