Skip to main content
Log in

Experimental validation of some thermal neutron self-shielding calculation methods for cylindrical samples in INAA

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Neutron self-shielding has been a factor of concern in the history of Instrumental Neutron Activation Analysis. When the sample to be analyzed cannot be made small enough in size and/or sufficiently diluted, this undesired phenomenon must be accounted for. Several analytical, semi-empirical and computational methods for estimating the thermal neutron self-shielding effects have been extensively discussed in the literature and this work aims at the experimental validation of some of these methods by neutron irradiation of cylindrical samples containing strong thermal neutron absorbers. The accuracy and the relative differences in the results between these methods are discussed for cylindrical samples with up to 40% thermal self-shielding, showing that a semi-empirical sigmoidal function can be more accurate in modeling this effect than other exact algorithms, where a maximum 2% relative difference to the experimental values was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Case KM, de Hoffmann F, Placzek G (1950) In: Introduction to the theory of neutron diffusion, vol 1. US Govt Printing Office, Washington

  2. Dwork J, Hofmann PL, Hurwitz H, Clancy EF (1955) Report KAPL-1262

  3. Nisle RG (1960) Nucleonics 14(3):86

    Google Scholar 

  4. Stewart JC, Zweifel PF (1959) Prog Nucl Energy Ser 1 3:331

    Google Scholar 

  5. Zweifel PF (1960) Nucleonics 18:174

    Google Scholar 

  6. Wachspress EL (1958) Nucl Sci Eng 3:186

    CAS  Google Scholar 

  7. Gilat J, Gurfinkel Y (1963) Nucleonics 21(8):143

    CAS  Google Scholar 

  8. Fleming RF (1982) Int J Appl Radiat Isot 33:1263

    Article  CAS  Google Scholar 

  9. De Corte F (1987) In: The k 0-standardization method: a move to the optimization of neutron activation analysis. Aggregate Thesis, Gent University, Belgium

  10. Blaauw M (1996) Nucl Sci Eng 124:431

    CAS  Google Scholar 

  11. Blaauw M (1995) Nucl Instrum Methods A 356:403

    Article  CAS  Google Scholar 

  12. Trkov A, Zerovnik G, Snoj L, Ravnik M (2009) Nucl Instrum Methods A 610(2):553–565

    Article  CAS  Google Scholar 

  13. Goncalves IF, Salgado J, Martinho E (2004) Nucl Sci Eng 148(3):426–428

    Google Scholar 

  14. Goncalves IF, Salgado J, Martinho E (2004) J Radioanal Nucl Chem 261(3):637–643

    Article  Google Scholar 

  15. Chilian C et al (2006) Nucl Instrum Methods A 564(2):629–635

    Article  CAS  Google Scholar 

  16. Chilean C, St-Pierre J, Kennedy G (2008) J Radioanal Nucl Chem 278(3):745–749

    Article  Google Scholar 

  17. Sears VF (1992) Neutron News 3(3):29–37

    Article  Google Scholar 

  18. NNDC (2010) Evaluated Nuclear Data File (ENDF) Retrieval & Plotting, USA. http://www.nndc.bnl.gov/sigma/index.jsp. Accessed 01 Jan 2011

  19. KAYZERO/SOLCOI® (2003) User’s manual for reactor neutron activation analysis using the k 0-standardization method, Ver. 5a, pp 10–120

  20. IAEA (2009) MATSSF Program. Vienna-Austria. http://www-nds.iaea.org/naa/matssf/. Accessed 10 Aug 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Farina Arboccò.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farina Arboccò, F., Vermaercke, P., Sneyers, L. et al. Experimental validation of some thermal neutron self-shielding calculation methods for cylindrical samples in INAA. J Radioanal Nucl Chem 291, 529–534 (2012). https://doi.org/10.1007/s10967-011-1211-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1211-y

Keywords

Navigation