Skip to main content
Log in

Separation of Cr(III) from Cr(VI) by Triton X-100 cerium(IV) phosphate as a surface active ion exchanger

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Triton X-100 cerium(IV) phosphate (TX-100CeP) was synthesized and characterized by using IR, X-ray, TGA/DT and the elemental analysis. The chemical stability of TX-100CeP versus the different concentrations of HCl acid was studied before and after its exposure to the radiation dose (30 K Gray). The effect of HCl concentration on separation of Cr(III) from Cr(VI) by using TX-100CeP as surface active ion exchanger was also studied. A novel method was achieved for the quantifying of Cr(III) and Cr(VI) ions by using the high-performance liquid chromatography (HPLC) at wavelength 650 nm, a stationary phase consists of reversed phase column (Nucleosil phenyl column; 250 × 4.6 mm, 5 μm), and a mobile phase consists of 0.001 M di-(2-ethylhexyl) phosphoric acid (DEHPA) in methanol:water (70:30 v/v). The retention times were 7.0 and 8.5 min, for the Cr(III) and Cr(VI), respectively. The exchange capacity of Cr(III) was quantified (2.1 meq/g) onto the TX-100CeP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Varshney KG, Tayal N, Gupta U (1998) J Colloid Surf A 145:71

    Article  CAS  Google Scholar 

  2. Kotze MH, Cloete FLD (1992) Ion Exch Adv Proc IEX 92:366

    Article  Google Scholar 

  3. Bajaj P, Goyal M, Chavan RB (1994) J Appl Polym Sci 51:423

    Article  CAS  Google Scholar 

  4. Cullum DC (1994) Introduction of surfactant analysis. Chapman & Hall, London, p 105

    Book  Google Scholar 

  5. Varshney KG, Rafiquee MZA, Somya A (2007) J Colloid Surf A 301:69–72

    Article  CAS  Google Scholar 

  6. Baral SS, Dasb N, Ramulub TS, Sahoob SK, Dasb SN, Chaudhury GR (2009) J Hazard Mater 161:1427

    Article  CAS  Google Scholar 

  7. Ohashi A, Hashimoto T, Imura H, Ohashi K (2007) J Talanta 73(5):893

    Article  CAS  Google Scholar 

  8. Varshney KG, Rafiquee MZA, Somya A (2008) J Colloid Surf A 317:400

    Article  CAS  Google Scholar 

  9. Bei W, Xiao QS, Jun L (2002) J Talanta 56:681

    Article  Google Scholar 

  10. Anderson RA (1989) Sci Total Environ 86:75

    Article  CAS  Google Scholar 

  11. Nriagu JO, Nieboer E (1972) Chromium in natural and human environments. Wiley Interscience, NY, p 56

    Google Scholar 

  12. Yeh SJ, Shibata N, Amano H, Yoshihara K, Yang MH, Chen PY, Ke CN, Kudo H (1969) J Nucl Sci Technol 6(2):75

    Article  CAS  Google Scholar 

  13. Gwizala AB III, Johnson SK, Mollah S, Houk R (1997) J Anal At Spect 12:503

    Article  Google Scholar 

  14. Yusof AM, Chia CH, Wood AKH (2007) J Radioanal Nucl Chem 273(3):533

    Article  CAS  Google Scholar 

  15. Rengan K (1997) J Radioanal Nucl Chem 219:211

    Article  CAS  Google Scholar 

  16. Devaragudi CS, Reddy KH (1997) J Talanta 44:1973

    Article  CAS  Google Scholar 

  17. Batley GE, Matousek JP (1980) Anal Chem 52:1570

    Article  CAS  Google Scholar 

  18. Peraniemi S, Ahlgren M (1995) Anal Chim Acta 315:365

    Article  Google Scholar 

  19. Brescianini C, Mazzucotelli A, Valerio F, Franche R, Scarponi G (1988) Fresenius J Anal Chem 332:34

    Article  CAS  Google Scholar 

  20. Bulut VN, Duran C, Tufekci M, Elci L, Soylak M (2007) J Hazard Mater 143:112

    Article  CAS  Google Scholar 

  21. Jayasinghe BS, Jayawardene MIFP, Pathiratne KAS (2003) Proceedings of the 8th international conference on environmental science and technology, Lemnos Island, Greece, 8–10 September 2003, p 325

  22. Akira T, Kenichi A (2000) J Anal Sci 16:843

    Article  Google Scholar 

  23. Socrates G (1980) Infrared characteristic group frequencies. Wiley, NY

    Google Scholar 

  24. Nyquist RN, Kagel RO (1997) Infrared and Raman spectra of inorganic compounds and organic salts. Academic Press, NY

    Google Scholar 

  25. Tarafdar A, Panda AB, Pradhan NC, Pramanik P (2006) J Microporous Mesoporous Mate 95:360

    Article  CAS  Google Scholar 

  26. Duval C (1953) Inorganic thermogravimetric analysis. Elsevier, Amsterdam, p 403

    Google Scholar 

  27. Zahir MH, Masuda Y (1997) J Talanta 44:365

    Article  CAS  Google Scholar 

  28. Maghray HB, youb EA, Marie SA (1988) J Rad Anal Nucl Chem 121(2):429

    Article  Google Scholar 

  29. Greenwood NN, Earnshaw A (2005) Chemistry of elements, 2nd edn. Reed Elsevier India Private Limited, p 1024

  30. Bandekar VS, Dhadke PM (1998) J Talanta 46:1181

    Article  CAS  Google Scholar 

  31. Hassan SSM, Awwad NS, Aboterika AHA (2006) J Radioanal Nucl Chem 269(1):135

    Article  CAS  Google Scholar 

  32. Samaratunga SS, Nishimoto J, Tabata M (2007) J Hydrometallurgy 89:207

    Article  CAS  Google Scholar 

  33. Sun H, Kang W, Liang S, Ha H, Shen S (2003) Anal Sci 19:589

    Article  CAS  Google Scholar 

  34. Baes Jr, Charles F, Mesmer RE (1986) The hydrolysis of cations. Krieger Publishing Company, Malabar, p 215

    Google Scholar 

  35. Garg UK, Kaur MP, Garg VK, Sud D (2007) J Hazard Mater 140:60

    Article  CAS  Google Scholar 

  36. Qureshi M, Varshney KG (1991) Inorganic ion exchangers in chemical analysis. CRC Press, BocaRaton

    Google Scholar 

  37. El-Said H, Mostafa M, El-Amir MA (2008) J Sol Extra Ion Exch 26:722

    Article  CAS  Google Scholar 

  38. Sule PA, Ingle JD Jr (1996) Anal Chim Acta 326:85

    Article  CAS  Google Scholar 

  39. Strelow FWE, Victor AH, van Zyl CR, Cynthia E (1971) J Anal Chem 43(7):870

    Article  CAS  Google Scholar 

  40. El-Azony KM, El-Said H, Mohty AA (2009) J Appl Radiat Isot 67:984

    Article  CAS  Google Scholar 

  41. Dabrowski A, Hubicki Z, Podkoscielny P, Robens E (2004) J Chemosphere 56:91

    Article  CAS  Google Scholar 

  42. Kraus KA, Nelson F (2007) Radiochemical separation by ion exchange. http://www.AnnualReviews.org

  43. Veljkovi S, Harbottle G (1961) Nature 191:1287

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the editor of the RANC for his cooperation and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. El-Azony.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Azony, K.M., Ismail Aydia, M. & El-Mohty, A.A. Separation of Cr(III) from Cr(VI) by Triton X-100 cerium(IV) phosphate as a surface active ion exchanger. J Radioanal Nucl Chem 289, 381–388 (2011). https://doi.org/10.1007/s10967-011-1079-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1079-x

Keywords

Navigation