Skip to main content
Log in

Modified Rhizopus arrhizus biomass for sorption of 241Am and other radionuclides

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The improvement and the refinement of non-viable Rhizopus arrhizus biomass were investigated via immobilization. Immobilization was carried out by using sodium alginate/CaCl2 solution and formaldehyde/HCl cross-linking with dead Rhizopus arrhizus biomass and were used for the sorption of radionuclides from low level effluent wastes. The sodium alginate/CaCl2 immobilized biomass (ratio 1:2) showed about 86% sorption for 241Am activity but due to its soft nature and tendency to undergo distortion in shape, is unsuitable for practical applications. The biomass cross-linked with 15% formaldehyde/0.1 M HCl solution has a relatively high mechanical strength and rigidity. It was showing a sorption of >99% for 241Am activity and has the sorption capacity of ~65 mg/g for americium and uranium. Hence, it can be utilized for the removal of radionuclides from radioactive waste effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedict M, Pigford HP, Levi HW (1981) Nuclear chemical engineering, 2nd edn. McGraw-Hill Book Comp, New York, pp 456–478

    Google Scholar 

  2. Nash KLA (1993) Solvent Extr Ion Exch 11:729–768

    Article  CAS  Google Scholar 

  3. Degueldre C, Bilewicz A, Hummel W, Loizeau JL (2001) J Environ Radioact 55:241–253

    Article  CAS  Google Scholar 

  4. Wall NA, Borkowski M, Chen JF, Choppin GR (2002) Radiochim Acta 90:563–568

    Article  CAS  Google Scholar 

  5. Dong WM, Zhang HX, Huang MD, Tao ZY (2002) Appl Radiat isot 56:959–965

    Article  CAS  Google Scholar 

  6. Zhu YJ, Chen JF, Choppin GR (1995) Radiochim Acta 68:95–98

    CAS  Google Scholar 

  7. Morita Y, Glatz JP, Kubota M (1996) Solvent Extr Ion Exch 14:385–400

    Article  CAS  Google Scholar 

  8. Ye GA, He JY, Jiang YQ (2000) ). J Nucl Radiochem 22:65–72

    CAS  Google Scholar 

  9. Liu N, Luo SZ, Yang YY, Zhang TM, Jin JN, Liao JL (2002) J Radioanal Nucl Chem 252:187–191

    Article  CAS  Google Scholar 

  10. Yang Y, Liu N, Luo S, Liao J, Jin J, Zhang T, Zhao P (2004) J Radioanal Nucl Chem 260:659–663

    Article  CAS  Google Scholar 

  11. Volesky B (1990) Biosorption and biosorbents. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton ISBN0849349176

    Google Scholar 

  12. Bae W, Chen W, Mulchandani A, Mehra RK (2000) Biotechnol Bioeng 70:518–524

    Article  CAS  Google Scholar 

  13. Hafez N, Abdel-Razek AS, Hafez MM (1997) J Chem Tech Biotechnol 68:19–22

    Article  CAS  Google Scholar 

  14. Kapoor A, Virataghavan T (1995) Bioresour Technol 53:195–206

    Article  CAS  Google Scholar 

  15. Reardon KF, Mosteller DC, Rogers JDB (2000) Biotechnol Bioeng 69:385–400

    Article  CAS  Google Scholar 

  16. Tsezos M, Volesky B (1981) Biotechnol Bioeng 23:583–604

    Article  CAS  Google Scholar 

  17. Tsezos M, Volesky B (1982) Biotechnol Bioeng 24:385–401

    Article  CAS  Google Scholar 

  18. Tsezos M, Volesky B (1982) Biotechnol Bioeng 24:955–969

    Article  CAS  Google Scholar 

  19. Dhami PS, Gopalakrishnan V, Kannan R, Ramanujam A, Salvi NA, Udupa SR (1998) Biotechnol Lett 20:225–228

    Article  CAS  Google Scholar 

  20. Dhami PS, Kannan R, Gopalakrishnan V, Ramanujam A, Salvi NA, Udupa SR (1998) Biotechnol Lett 20:869–872

    Article  CAS  Google Scholar 

  21. Dhami PS, Kannan R, Naik PW, Gopalakrishnan V, Ramanujam A, Salvi NA, Chattopadhyay S (2002) Biotechnol Lett 24:885–889

    Article  CAS  Google Scholar 

  22. Liu N, Liao J, Luo S, Yang Y, Jin J, Zhang T, Zhao P (2003) Radioanal Nucl Chem 258:59–63

    Article  CAS  Google Scholar 

  23. Brierley CL, Brierley JA (1993) Immobilization of biomass for industrial application for adsorption. In: Torma AE, Apel ML, Brierley CL (eds) Proceedings of an International biohydro-metallurgy symposium, vol II. Bio hydrometallurgical Technologies, The Mineral, Metals and Materials Society, Warrendale, pp 35–44

  24. Nakamura A, Horikoshi T, Sakauchi T (1982) Eur J Appl Microbiol Biotechnol 16:88–91

    Article  Google Scholar 

  25. White C, Gadd GM (1990) J Chem Tech Biotechnol 49:331–343

    CAS  Google Scholar 

  26. Lloyd JR, Harding L, Macaskie LE (1997) Biotechnol Bioeng 55:505–510

    Article  CAS  Google Scholar 

  27. Barkley NP (1991) J Air Waste Manage Assoc 41:1381–1388

    Google Scholar 

  28. Zhao M, Duncan JR (1997) Biotechnol Lett 19:953–955; and references cited

    Google Scholar 

  29. Mathur JN, Murali MS, Natarajan PR, Badheka LP, Banerji A (1992) Talanta 39:493–496

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, S.C., Kannan, R., Dhami, P.S. et al. Modified Rhizopus arrhizus biomass for sorption of 241Am and other radionuclides. J Radioanal Nucl Chem 287, 691–695 (2011). https://doi.org/10.1007/s10967-010-0949-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0949-y

Keywords

Navigation