Skip to main content
Log in

99mTc-labeling and molecular modeling of short dipeptide glycyl-l-proline

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Glycyl-l-proline (Gly-l-Pro) is the main degradation product of collagen and is a good diagnostic tool in various pathological conditions. The aim of this work was to prepare dipeptide Gly-l-Pro labeled with 99mTc. Complex preparation was carried out under alkaline reaction conditions and its stability was assessed 10 and 120 min after preparation. The formation of two types of complex compounds was observed. High-performance liquid chromatography, paper electrophoresis, paper chromatography and thin layer chromatography were employed to monitor the formation of different complexes. Molecular modeling (semi-empirical method) was used to design their structure and composition. First complex cI with formula [TcO(Gly-l-Pro)]−1 is unstable. After 120 min cI is completely transformed to complex cII with formula Tc(Gly-l-Pro)3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Signore A, Annavazzi A, Chianelli M et al (2001) Eur J Nucl Med 28:1555–1556

    Article  CAS  Google Scholar 

  2. Blok D, Vermeij P, Pauwels EJK (1999) Eur J Nucl Med 26:1511–1519

    Article  CAS  Google Scholar 

  3. Langer M, Bella R, Garcia-Garayova E et al (2001) Bioconjug Chem 12:1028–1034

    Article  CAS  Google Scholar 

  4. Decristoforo C, Mather SJ (1999) Bioconjug Chem 10:431–438

    Article  CAS  Google Scholar 

  5. Gariepy J, Remy S, Zhang XG et al (2002) Bioconjug Chem 13:679–684

    Article  CAS  Google Scholar 

  6. Zhu Z, Wang Y, Zhang Y (2001) Nucl Med Biol 28:703–708

    Article  CAS  Google Scholar 

  7. Liu S, Edwards DS (1999) Chem Rev 99:2235–2268

    Article  CAS  Google Scholar 

  8. Sassi ML (2001) Carboxyterminal degradation products of type I collagen. Oulu University Press, Oulu. ISBN 951-42-6491-6

  9. Reiser KM, Amigable MA, Last JA (1992) J Biol Chem 267:24207–24216

    CAS  Google Scholar 

  10. Hadley JC, Meek KM, Malik NS (1998) Glycoconjug J 15:835–840

    Article  CAS  Google Scholar 

  11. Le J, Perier C, Peyroche S et al (1998) Amino Acids 17:315–322

    Article  Google Scholar 

  12. Lullo GA, Sweeney SM, Korkko J et al (2002) J Biol Chem 277:4223–4231

    Article  Google Scholar 

  13. Chruscinska E, Garribba E, Micera G (1999) J Chem Res (S) 3:240–241

    Article  Google Scholar 

  14. Kittl WS, Rode BM (1981) Inorg Chim Acta 55:21–27

    Article  CAS  Google Scholar 

  15. Kotluv WL, Fried M, Gurd FRN (1959) J Am Chem Soc 82:233–241

    Google Scholar 

  16. Martin RB, Chamberlin M, Edsall JT (1959) J Am Chem Soc 82:495–508

    Article  Google Scholar 

  17. Benkovsky I, Stanik R (2008) J Radioanal Nucl Chem 280:63–68

    Article  Google Scholar 

  18. Stalteri MA, Bansal S, Hider R et al (1999) Bioconjug Chem 10:130–136

    Article  CAS  Google Scholar 

  19. Cantorias MV, Howell RC, Todaro L et al (2007) Inorg Chem 46:7326–7340

    Article  CAS  Google Scholar 

  20. Gano L, Patricio L, Castanheira I (1989) J Radioanal Nucl Chem 132:171–178

    Article  CAS  Google Scholar 

  21. Kothari K, Pillai MRA, Unni PR et al (1999) Appl Radiat Isot 51:43–49

    Article  CAS  Google Scholar 

  22. Park JY, Lee TS, Choi TH et al (2007) Nucl Med Biol 34:1029–1036

    Article  CAS  Google Scholar 

  23. Jovanovic V, Maksin T, Konstantinovska D et al (1980) J Radioanal Chem 59:239–243

    Article  CAS  Google Scholar 

  24. Zolle I (2007) Technetium-99m pharmaceuticals. Springer, Berlin. ISBN-10-3-540-33989-2

  25. Fis M, Brabec V, Dragoun O et al (1986) Int J Radiat Appl Instrum A. Appl Radiat Isot 37:1213–1218

    Article  Google Scholar 

  26. Yoshihara K, Omori T (1996) Technetium and rhenium. Springer, Berlin. ISBN 3-540-59469-8

  27. Hashimoto K, Kamal WHBBW, Matsuoka H (2005) J Nucl Radiochem Sci 6:193–196

    CAS  Google Scholar 

  28. Reichert DE, Welch MJ (2001) Coord Chem Rev 212:111–131

    Article  CAS  Google Scholar 

  29. Comba P, Daubinet A, Bodo M et al (2006) J Organomet Chem 691:2495–2502

    Article  CAS  Google Scholar 

  30. Boudreau RJ, Mertz E (1997) Nucl Med Biol 24:395–398

    Article  CAS  Google Scholar 

  31. Bandoli G, Clemente DA, Mazzi U et al (1978) Acta Crysallogr B34:3359–3360

    Article  CAS  Google Scholar 

  32. Jurisson JS, Dancey K, McPartlin M et al (1984) Dtsch Inorg Chem 23:4743–4748

    Article  CAS  Google Scholar 

  33. Abram U, Abram S, Dilworth JR (1996) Acta Crystallogr C52:605–607

    CAS  Google Scholar 

  34. Bryan JC, Cotton FA, Daniels LM et al (1995) Inorg Chem 34:1875–1883

    Article  CAS  Google Scholar 

  35. Archer CM, Dilworth JR, Thompson RM et al (1993) J Chem Soc, Dalton Trans 3:461–466

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by grand from the Ministry of Education of the Slovak Republic number 1/0003/08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Staník.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staník, R., Benkovský, I. 99mTc-labeling and molecular modeling of short dipeptide glycyl-l-proline. J Radioanal Nucl Chem 287, 949–953 (2011). https://doi.org/10.1007/s10967-010-0852-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0852-6

Keywords

Navigation