Skip to main content
Log in

Electrosorption of uranium ions on activated carbon fibers

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A study on the electrosorption of uranium (U(VI)) ions onto a porous activated carbon fiber was performed to treat lagoon sludge containing 100 mg/L uranium and high concentration of chemical salts composed 3.8% NaNO3, 19.8% NH4NO3, 1.9% Ca(NO3)2. The applied negative potential increased the adsorption kinetics and capacity in comparison to the open-circuit potential adsorption for uranium ions. When applying potential at −0.9 V (vs. Ag/AgCl) and pH 4, above 99% of the uranium is selectively removed from the 100 mg/L influent by electrosorption, and the cumulative amount of uranium for 50 h is about 600 mguranium/gACF. The high selectivity of elctrosorption process for uranium was probably caused by the difference of charge density of cations. More than 99% of adsorbed uranium ions was desorbed at a potential of +1.2 V and pH 3. The electrosorption of uranium onto the porous activated carbon fiber electrode is due to an ion exchange type reaction between the uranium ions and surface acid groups on carbon surface. Cyclic electrosorption test consisting of adsorption and desorption step shows that the activated carbon fiber electrode is easily regenerated in situ, indicating it is a reversible process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kaplan D, Gervais T, Krupka K (1998) Radiochim Acta 80:201–211

    CAS  Google Scholar 

  2. Konstatinou M, Pashalidis I (2007) J Radioanal Nucl Chem 273:549–552

    Article  Google Scholar 

  3. Sato T, Murakamit T, Yanase N, Isobe H, Payne T, Airey P (1997) Environ Sci Technol 31:2854–2858

    Article  CAS  Google Scholar 

  4. Guler H, Sahiner G, Aycik A, Guven O (1997) J Appl Polym Sci 66:2475–2480

    Article  CAS  Google Scholar 

  5. Wei Y, Kumagai M, Takashima Y, Asou M, Namba T, Suzuki K, Maekawa A, Ohe S (1998) J Nucl Sci Technol 35:357–364

    Article  CAS  Google Scholar 

  6. Nakajima A, Sakaguchi T (1999) J Radioanal Nucl Chem 242:623–626

    Article  CAS  Google Scholar 

  7. Inoue K, Kawakita H, Ohto K, Oshima T, Murakami H (2006) J Radioanal Nucl Chem 267:435–442

    Article  CAS  Google Scholar 

  8. Donat R, Aytas S (2005) J Radioanal Nucl Chem 265:107–114

    Article  CAS  Google Scholar 

  9. Donat R, Esen K, Cetisli H, Aytas S (2009) J Radioanal Nucl Chem 279:253–261

    Article  CAS  Google Scholar 

  10. Sauer N, Smith B (1993) Metal-ion recycle technology for metal electroplating waste waters. LA-12532-MS

  11. Hazourli S, Bonnecaze G, Astruc M (1996) Adsorption and electrosorption of organic compounds on granular activated carbon. Environ Technol 17:1275–1283

    CAS  Google Scholar 

  12. Jayson G, Sangster J, Thompson G, Wilkinson M (1987) Carbon 25:523–531

    Article  CAS  Google Scholar 

  13. Carley-Macauy K, Gutman R (1981) Radioactive waste: advanced management methods for medium active liquid waste. Harwood Academic Publishers, Brussels

    Google Scholar 

  14. Gabelich C, Tran T, Suffet I (2002) Environ Sci Technol 36:3010

    Article  CAS  Google Scholar 

  15. Trainham J, Newman J (1997) J Electrochem Soc 124:1528–1540

    Article  Google Scholar 

  16. Oren Y, Soffer A (1983) Electrochim Acta 28:1649–1654

    Article  CAS  Google Scholar 

  17. Hou C, Patricia T, Sotira Y, Costas T (2008) J Chem Phys 129:224703

    Article  Google Scholar 

  18. Shmidt J, Pimenov A, Lieberman A, Chen H (1997) Sep Sci Technol 32:2105–2121

    Article  CAS  Google Scholar 

  19. Defay R, Prigogine I, Bellemans A, Everett D (1970) Surface tension and adsorption. Longmlans, London

    Google Scholar 

  20. Tomizuka I, Meguro T, Kuwagaki H, Chiba A, Miyazaki A, Okamoto M (1994) Elimination behavior of metallic ion from its dilute solution by activated carbon fiber under applied electrical potential. In: Proceeding of Carbon ’94, Granada, Spain

  21. Hatfield T, Kleven T, Pierce D (1996) J Appl Electrochem 26:567–574

    Article  CAS  Google Scholar 

  22. Evans S (1966) J Electrochem Soc 113:2975

    Google Scholar 

  23. Seron A, Benaddi H, Beguin F, Frackowiak E, Bretelle J, Thiry M, Bandosz T, Jagiello J, Schwarz J (1996) Carbon 34:481–487

    Article  CAS  Google Scholar 

  24. Lange N (2004) Lange’s handbook of chemistry. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgment

This work has been carried out under the Nuclear R & D Program funded by the Ministry of Education, Science and Technology of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Hun Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, CH., Lee, HY., Moon, JK. et al. Electrosorption of uranium ions on activated carbon fibers. J Radioanal Nucl Chem 287, 833–839 (2011). https://doi.org/10.1007/s10967-010-0848-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0848-2

Keywords

Navigation