Skip to main content
Log in

Annual average radon concentration in the show caves of Hungary

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radon can accumulate in underground areas such as show caves. Repairmen and tourist guides working in such caves may thus be exposed to significant radiation doses. Therefore, it is necessary to measure the radon concentration to estimate the exact radiation dose caused by radon. Considering that the radon concentration in caves usually shows significant seasonal fluctuations, the monthly change of radon concentration was studied for 1 year in nine show caves opened to the public in Hungary. Despite the fact that all of the caves were formed in karst rocks, the annual average radon concentration levels were rather different between each other (541–8287 Bq m−3). The significant monthly fluctuation of the radon concentration indicates that the annual average radon concentration in caves can only be accurately obtained by year-long measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. UNSCEAR (2000) Sources and effects of ionizing radiation. Report to the General Assembly, with Scientific Annexes,vol I: sources. United Nations, New York

  2. Hornung RW, Deddens JA, Roscoe RJ (1998) Modifiers of lung cancer risk in Uranium Miners from the Colorado Plateau. Health Phys 74:12–21

    Article  CAS  Google Scholar 

  3. Archer VE, Wagoner SD, Lundin FE (1973) Cancer mortality among Uranium mill workers. J Occu Med 15:11–14

    CAS  Google Scholar 

  4. Darby S, Hill D, Deo H, Auvinen A, Barros-Dios MJ, Baysson H, Bochicchio F, Falk R, Farchi S, Figueiras A, Hakama M, Heid I, Hunter N, Kreienbrock L, Kreuzer M, Lagarde FC, Mäkeläinen I, Muirhead C, Oberaigner W, Pershagen G, Ruosteenoja E, Schaffrath Rosario A, Tirmarche M, Tomášek L, Whitley E, Wichmann H-E, Doll R (2006) Residential radon and lung cancer—detailed results of a collaborative analysis of individual data on 7148 persons with lung cancer and 14 208 persons without lung cancer from 13 epidemiologic studies in Europe. Scand J Work Environ Health 32:1–84

    Google Scholar 

  5. RP IC (1994) Protection against radon-222 at home and at work. ICRP Publication 65. Pergamon Press, Oxford

    Google Scholar 

  6. Hungarian Regulation 16/2000 (2000) Ministry of Health implementing the provisions of the law no. CXVI. of the year 1996 of nuclear energy. Hungarian Bulletin No. 55, Budapest

  7. Cothern CR, Smith JE (1987) Environmental Radon, Environmental Science Research. Plenum Press, New York and London

    Google Scholar 

  8. Somlai J, Jobbágy V, Németh Cs, Gorjánácz Z, Kávási N, Kovács T (2005) Radiation dose from coal-slag used as building material in the Transdanubian region of Hungary. Radiat Prot Dosim 118:82–87

    Article  Google Scholar 

  9. Hakl J, Hunyadi I, Csige I, Gécy G, Lénart KL, Várhegyi A (1997) Radon transport phenomena studied in karst caves-international experiences on radon levels and exposures. Radiat Meas 28:675–684

    Article  CAS  Google Scholar 

  10. Perrier F, Richon P, Crouzeix C, Morat P, Le Moue¨l JL (2004) Radon-222 signatures of natural ventilation regimes in an underground quarry. J Environ Radioactiv 71:17–32

    Article  CAS  Google Scholar 

  11. Solomon SB, Langroo R, Peggie JR, Lyons RG, James JM (1996) Occupational Exposure to Radon in Australian Tourist Caves an Australia-wide study of Radon Levels. ISSN 0157-1400, Yallambie

  12. Gillmore GK, Sperrin M, Phillips P, Denman A (2000) Radon hazards, geology, and exposure of cave users: a case study and some theoretical perspectives. Ecotox Environ Safe 46:279–288

    Article  CAS  Google Scholar 

  13. Kobal I, Ančik M, Škofljanec M (1998) Variations of radon-222 air concentration in Postojna Cave. Radiat Prot Dosim 25:207–211

    Google Scholar 

  14. Duffy JT, Madden JS, Mackin GM, McGarry AT, Colgan PA (1996) A reconnaissance survey of radon in show caves in Ireland. Environ Int 22:415–423

    Article  Google Scholar 

  15. Somlai J, Szeiler G, Szabó P, Tokonami S, Ishikawa T, Sorimachi A, Yoshinaga S, Kovács T (2009) Radiation dose of workers originating from radon in the show Cave of Tapolca, Hungary. J Radioanal Nucl Chem 279:219–225

    Article  CAS  Google Scholar 

  16. Field MS (2007) Risks to cavers and cave workers from exposures to low-level ionizing alpha radiation from 222Rn decay in caves. J Cave Karst Stud 69:207–228

    CAS  Google Scholar 

  17. Bahtijari M, Vaupotic J, Gregoric A, Stegnar P, Kobal I (2008) Exposure to radon in the Gadime Cave, Kosovo. J Environ Radioactiv 99:343–348

    Article  CAS  Google Scholar 

  18. Sainz C, Quindós LS, Fuente I, Nicolás J, Quindós L (2007) Analysis of the main factors affecting the evaluation of the radon dose in workplaces: the case of tourist caves. J Hazard Mater 145:368–371

    Article  CAS  Google Scholar 

  19. Harley NH, Terilli TB (1990) Predicting annual average indoor 222Rn concentration. Health Phys 59:205–209

    CAS  Google Scholar 

  20. Hámori K, Tóth E, Pál L, Köteles G, Losonci A, Minda M (2006) Evaluation of indoor radon measurements in Hungary. J Environ Radioactiv 88:189–198

    Article  Google Scholar 

  21. Tokonami S, Furukawa M, Shicchi Y, Sanada T, Yamada Y (2003) Characteristics of radon and its progeny concentrations in air-conditioned office buildings in Tokyo. Radiat Prot Dosim 106:71–75

    CAS  Google Scholar 

  22. Yu KN, Young ECM, Stokes MJ, Tang KK (1998) Radon properties in offices. Health Phys 75:159–164

    Article  CAS  Google Scholar 

  23. Naturally Occurring Radioactivity in the Nordic Countries—Recommendations (2000) ISBN 91-89230-00-0

  24. Scivyer CR, Gregory TJ (1995) BRE (Building Research Establishment) Radon in the workplaces. Establishment Report, Watford

  25. Szerbin P (1996) Radon concentrations and exposure levels in Hungarian caves. Health Phys 71:362–369

    Article  CAS  Google Scholar 

  26. Hakl J, Hunyadi I, Csige I, Géczy G, Lénárt L, Törőcsik I (1992) Outline of natural radon occurences on karstic terrains of Hungary. Radiat Prot Dosim 45:183–186

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kovács.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somlai, J., Hakl, J., Kávási, N. et al. Annual average radon concentration in the show caves of Hungary. J Radioanal Nucl Chem 287, 427–433 (2011). https://doi.org/10.1007/s10967-010-0841-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0841-9

Keywords

Navigation