Skip to main content
Log in

Sorption of cesium from water solutions on potassium nickel hexacyanoferrate-modified Agaricus bisporus mushroom biomass

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In order to gain biosorbent that would have the ability to bind cesium ions from water solution effectively, potassium nickel hexacyanoferrate(II) (KNiFC) was incorporated into the mushroom biomass of Agaricus bisporus. Cesium sorption by KNIFC-modified A. bisporus biosorbent was observed in batch system, using radiotracer technique using 137Cs radioisotope. Kinetic study showed that the cesium sorption was quite rapid and sorption equilibrium was attained within 1 h. Sorption kinetics of cesium was well described by pseudo-second order kinetics. Sorption equilibrium was the best described by Freundlich isotherm and the distribution coefficient was at interval 7,662–159 cmg−1. Cesium sorption depended on initial pH of solution. Cesium sorption was very low at pH0 1.0–3.0. At initial pH 11.0, maximum sorption of cesium was found. Negative effect of monovalent (K+, Na+, NH4 +) and divalent (Ca2+, Mg2+) cations on cesium sorption was observed. Desorption experiments showed that 0.1 M potassium chloride is the most suitable desorption agent but the complete desorption of cesium ions from KNiFC-modifed biosorbent was not achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parab H, Sudersanan M (2010) Engineering a lignocellulosic biosorbent-Coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Res 44:854–860

    Article  CAS  Google Scholar 

  2. Sharygin L, Muromskiy A, Kalyagina M, Borovkov S (2007) A granular inorganic cation-exchanger selective to cesium. J Nucl Sci Technol 44:767–773

    Article  CAS  Google Scholar 

  3. Milyutin VV, Mikheev SV, Gelis VM, Kononenko OA (2009) Coprecipitation of microamounts of cesium with precipitates of transition metal ferrocyanides in alkaline solutions. Radiochemistry 51:295–297

    Article  CAS  Google Scholar 

  4. Milyutin VV, Mikheev SV, Gelis VM, Kozlitin EA (2009) Sorption of cesium on ferrocyanide sorbents from highly saline solutions. Radiochemistry 51:298–300

    Article  CAS  Google Scholar 

  5. Loss-Neskovic C, Ayrault S, Badillo V, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Merinov B (2004) Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. J Solid State Chem 177:1817–1828

    Article  Google Scholar 

  6. Nilchi A, Malek B, Maragheh MG, Khanchi A (2003) Exchange properties of cyanide complexes. Part I. Ion exchange of cesium on ferrocyanides. J Radioanal Nucl Chem 258:457–462

    Article  CAS  Google Scholar 

  7. Haas AP (1993) A review of information on ferrocyanide solids for removal of cesium from solutions. Sep Sci Technol 28:2479–2506

    Article  CAS  Google Scholar 

  8. Ayrault S, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Loos-Neskovich C (1998) Sorption mechanisms of cesium on Cu II2 FeII(CN)6 and Cu III3 [FeIII(CN)6]2 hexacyanoferrates and their relation to the crystalline structure. J Solid State Chem 141:475–485

    Article  CAS  Google Scholar 

  9. Ayrault S, Loos-Neskovic C, Fedoroff M, Garnier E, Jones DJ (1995) Compositions and structures of copper hexacyanoferrates(II) and (III): experimental results. Talanta 42:1581–1593

    Article  CAS  Google Scholar 

  10. Loos-Neskovic C, Fedoroff M, Garnier E (1989) Preparation, composition and structure of some nickel and zinc ferrocyanides: experimental results. Talanta 36:749–759

    Article  CAS  Google Scholar 

  11. Ismail IM, El-Sourougy MR, Abdel Moneim N, Aly HF (1998) Preparation, characterization, and utilization of potassium nickel hexacyanoferrate for the separation of cesium and cobalt from contaminated waste water. J Radioanal Nucl Chem 237:97–102

    Article  CAS  Google Scholar 

  12. Ismail IM, El-Sourougy MR, Abdel Moneim N, Aly HF (1999) Equilibrium and kinetic studies of the sorption of cesium by potassium nickel hexacyanoferrate complex. J Radioanal Nucl Chem 240:59–67

    Article  CAS  Google Scholar 

  13. Milonjić S, Bispo I, Fedoroff M, Loos-Neskovic C, Vidal-Majdar C (2002) Sorption of cesium on copper hexacyanoferrate/polymer/silica composites in batch and dynamic conditions. J Radioanal Nucl Chem 252:497–501

    Article  Google Scholar 

  14. Rajec P, Orechovská J, Novák I (2000) NIFSIL: a new composite sorbent for cesium. J Radioanal Nucl Chem 245:317–321

    Article  CAS  Google Scholar 

  15. Orechovská J, Rajec P (1999) Sorption of cesium on composite sorbents based on nickel ferrocyanide. J Radioanal Nucl Chem 242:387–390

    Article  Google Scholar 

  16. Kazemian H, Zakeri H, Rabbani MS (2006) Cs and Sr removal from solution using potassium nickel hexacyanoferrate impregnated zeolites. J Radioanal Nucl Chem 268:231–236

    Article  CAS  Google Scholar 

  17. Mimura H, Kimura M, Akiba K (1999) Selective removal of cesium from sodium nitrate solutions by potassium nickel hexacyanoferrate-loaded chabazites. Sep Sci Technol 34:17–28

    Article  CAS  Google Scholar 

  18. Šebesta F (1997) Composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix. I. Methods of modification of properties of inorganic ion-exchangers for application in column packed beds. J Radioanal Nucl Chem 220:77–88

    Article  Google Scholar 

  19. Gelis VM, Milyutin VV, Chuveleva EA, Maslova GB, Kudryavtseva SP, Firsova LA, Kozlitin EA (2000) Sorption and chromatographic techniques for processing liquid waste of nuclear fuel cycle. Posters session P3.35, Atalante 2000, International conference: scientific research on the back-end of the fuel cycle for the 21st century, Avignon, 24–26 Oct 2000

  20. Ghorbanzadeh MS, Tajer MGP (2009) Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: application of micro-PIXE for measurement of biosorption. Biores Technol 100:1915–1921

    Article  Google Scholar 

  21. Jalali-Rad R, Ghafourian H, Asef Y, Dalir ST, Sahafipour MH, Gharanjik BM (2004) Biosorption of cesium by native and chemically modified biomasss of marine algae: introduce the new biosorbents for biotechnology applications. J Hazard Mater 116:125–134

    Article  CAS  Google Scholar 

  22. Arief VO, Trilestari K, Sunarso J, Indraswati N, Ismadji S (2008) Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean 36:937–962

    CAS  Google Scholar 

  23. Das N (2005) Heavy metals biosorption by mushrooms. Nat Prod Radiance 4:454–459

    Google Scholar 

  24. Kalač P (2001) A review of edible mushroom radioactivity. Food Chem 75:29–35

    Article  Google Scholar 

  25. Bazala MA, Golda K, Bystrzejewska-Piotrowska G (2008) Transport of radiocesium in mycelium and its translocation to fruitbodies of a saprophytic macromycete. J Environ Radioact 99:1200–1202

    Article  CAS  Google Scholar 

  26. Melgar MJ, Alonso J, García MA (2007) Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus. Sci Total Environ 385:12–19

    Article  CAS  Google Scholar 

  27. Vimala R, Das Nilanjana (2009) Biosorption of cadmium(II) and lead(II) from aqueous solution using mushrooms: a comparative study. J Hazard Mater 168:376–382

    Article  CAS  Google Scholar 

  28. Sari A, Tuzen M (2009) Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: equilibrium and kinetic studies. J Hazard Mater 164:1372–1378

    Article  CAS  Google Scholar 

  29. Sari A, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater 164:1004–1011

    Article  CAS  Google Scholar 

  30. Anayurt RA, Sari A, Tuzen M (2009) Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chem Eng J 151:255–261

    Article  CAS  Google Scholar 

  31. Ertugay N, Bayhan YK (2010) The removal of copper(II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modeling. Desalination 255:137–142

    Article  CAS  Google Scholar 

  32. Pipíška M, Vrtoch L, Horník M, Augustín J, Lesný J (2007) Uptake of 137Cs and 60Co by bryophytes and lichens. Cereal Res Commun 35:929–932

    Article  Google Scholar 

  33. Kočiová M, Pipíška M, Horník M, Augustín J (2005) Bioaccumulation of radiocesium by lichen Hypogymnia physodes. Biologia 60:655–660

    Google Scholar 

  34. Pipíška M, Kočiová M, Horník M, Augustín J, Lesný J (2005) Influence of time, temperature, pH and inhibitors on bioaccumulation of radiocesium—137Cs by lichen Hypogymnia physodes. Nukleonika 50:29–37

    Google Scholar 

  35. Christensen JJ, Izatt RM (1983) Handbook of metal ligand heats and related thermodynamic quantities. Marcel Dekker, Inc, New York

    Google Scholar 

  36. Schurhammer R, Diss R, Spiess B, Wipff G (2008) Conformational and Cs+ complexation properties of norbadione-A: a molecular modeling study. Phys Chem Chem Phys 10:495–505

    Article  CAS  Google Scholar 

  37. Gill M (2003) Pigments of fungi (Macromycetes). Nat Prod Rep 20:615–639

    Article  CAS  Google Scholar 

  38. Faustino PJ, Yang Y, Progar JJ, Brownell CR, Sadrieh N, May JC et al (2008) Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue. J Pharm Biomed Anal 47:114–125

    Article  CAS  Google Scholar 

  39. Mimura H, Kageyama N, Akiba K, Yoneya M, Miyamoto Y (1998) Ion-exchange properties of potassium nickel hexacyanoferrate(II) compounds. Solv Extr Ion Exch 16:1013–1031

    Article  CAS  Google Scholar 

  40. Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interface Sci 152:2–13

    Article  CAS  Google Scholar 

  41. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. K Sven Vetensk Handl 24:1–39

    Google Scholar 

  42. Ho YS (2006) Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res 40:119–125

    Article  CAS  Google Scholar 

  43. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div ASCE 89:31–59

    Google Scholar 

  44. Caroni ALPF, de Lima CRM, Pereira MR, Fonseca JLC (2009) The kinetics of adsorption of tetracycline on chitosan particles. J Colloid Interface Sci 340:182–191

    Article  CAS  Google Scholar 

  45. Ali Khan SA, Rehman R, Ali Khan M (1994) Sorption of cesium on bentonite. Waste Manag 14:629–642

    Article  Google Scholar 

  46. Krejzler J, Narbutt J (2003) Adsorption of strontium, europium and americium(III) ions on a novel adsorbent Apatite II. Nukleonika 48:171–175

    CAS  Google Scholar 

  47. Klika Z, Kraus L, Vopálka D (2007) Cesium uptake from aqueous solutions by bentonite: a comparison of multicomponent sorption with ion-exchange models. Langmuir 23:1227–1233

    Article  CAS  Google Scholar 

  48. Galamboš M, Kufčáková J, Rajec P (2009) Sorption of strontium on Slovak bentonites. J Radioanal Nucl Chem 281:347–357

    Article  Google Scholar 

  49. Galamboš M, Kufčáková J, Rajec P (2009) Adsorption of cesium on domestic bentonites. J Radioanal Nucl Chem 281:485–492

    Article  Google Scholar 

  50. Galamboš M, Paučová V, Kufčáková J, Rosskopfová O, Rajec P, Adamcová R (2010) Cesium sorption on bentonites and montmorillonite K10. J Radioanal Nucl Chem 284:55–64

    Article  Google Scholar 

  51. Rajec P, Domianová K (2008) Cesium exchange reaction on natural and modified clinoptilolite zeolites. J Radioanal Nucl Chem 275:503–508

    Article  CAS  Google Scholar 

  52. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  53. Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

  54. Ncibi MC, Altenor S, Seffen M, Brouers F, Gaspard S (2008) Modelling single compound adsorption onto porous and non-porous sorbents using a deformed Weibull exponential isotherm. Chem Eng J 145:196–202

    Article  CAS  Google Scholar 

  55. Valsala TP, Roy SC, Shah JG, Gabriel J, Raj K, Venugopal V (2009) Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger. J Hazard Mater 166:1148–1153

    Article  CAS  Google Scholar 

  56. Pipíška M, Horník M, Remenárová L, Augustín J, Lesný J (2010) Biosorption of cadmium, cobalt and zinc by moss Rhytidiadelphus squarrosus in the single and binary component systems. Acta Chim Slov 57:163–172

    Google Scholar 

  57. Pipíška M, Horník M, Vrtoch L, Augustín J, Lesný J (2008) Biosorption of Zn and Co ions by Evernia prunastri from single and binary metal solutions. Chem Ecol 24:181–190

    Article  Google Scholar 

  58. Pipíška M, Horník M, Vrtoch L, Augustín J, Lesný J (2007) Biosorption of Co2+ ions by lichen Hypogymnia physodes from aqueous solutions. Biologia 62:276–282

    Article  Google Scholar 

  59. Mimura H, Lehto J, Harjula R (1997) Ion Exchange of cesium on potassium nickel hexacyanoferrate(II)s. J Nucl Sci Technol 34:484–489

    Article  CAS  Google Scholar 

  60. Ayrault S, Loos-Neskovic C, Fedoroff M, Garnier E (1994) Copper hexacyanoferrates: preparation, composition and structure. Talanta 41:1435–1452

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľ. Vrtoch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vrtoch, Ľ., Pipíška, M., Horník, M. et al. Sorption of cesium from water solutions on potassium nickel hexacyanoferrate-modified Agaricus bisporus mushroom biomass. J Radioanal Nucl Chem 287, 853–862 (2011). https://doi.org/10.1007/s10967-010-0837-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0837-5

Keywords

Navigation