Skip to main content
Log in

Interaction of biomass of aerobic bacteria and fungi with Pu(IV) at low pH

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the change of Pu oxidation states due to interaction with aerobic bacteria and fungi at low pH under laboratory conditions. Microorganisms were isolated from samples collected from the low-level radioactive waste repository within the confines of Ignalina NPP. Abilities of the fungi (Absidia spinosa var spinosa Lendn. and Paecilomyces lilacinus Thom Samson) as well as Gram-positive bacteria (Bacillus mycoides and Micrococcus luteus) and Gram-negative bacterium I-m1 to transform the oxidation states of Pu under aerobic conditions were investigated. Oxidized and reduced Pu was tested using two radiochemical procedures. The amount of reduced and oxidized Pu was determined by measuring alpha activity after radiochemical separation. The results have shown that all bacteria and fungi can very slightly alter oxidation states of Pu due to their microbial activity. All the microorganisms tested demonstrate quite a fast process of Pu biosorption under the experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brainard JR, Strietelmeier BA, Smith PH, Langston-Unkefer PJ, Barr ME, Ryan RR (1992) Radiochim Acta 58–59:357–363

    Google Scholar 

  2. John SG, Ruggiero CE, Hersman LE, Tung CS, Neu MP (2001) Environ Sci Technol 35:2942–2948

    Article  CAS  Google Scholar 

  3. Francis AJ (2001) In: Kudo A (ed) Plutonium in environment. Elsevier, Amsterdam

    Google Scholar 

  4. Francis AJ, Dodge CJ, Ohnuki T (2007) J Nucl Radiochem Sci 8:121–127

    CAS  Google Scholar 

  5. Panak PJ, Nitsche H (2001) Radiochim Acta 89:499–504

    Article  CAS  Google Scholar 

  6. Kakiuchi H, Amano H, Ichimasa M (2002) J Radioanal Nucl Chem 252(2):437–439

    Article  CAS  Google Scholar 

  7. Ohnuki T, Samadfam M, YoshidaT, Ozaki T, Yoshida Z, Francis AJ (2003) In: Jarvinen GD (ed) Plutonium futures—the science. American Institute of Physics, Melville, New York

  8. Panak PJ, Booth CH, Caulder DL, Bucher JJ, Shuh DK, Nitsche H (2002) Radiochim Acta 90:315–321

    Article  CAS  Google Scholar 

  9. Neu MP, Icopini GA, Boukhalfa H (2005) Radiochim Acta 93:705–714

    Article  CAS  Google Scholar 

  10. Wang J, Chem C (2009) Biotechnol Adv 27:195–226

    Article  Google Scholar 

  11. Roussel-Debet S, Deneux-Mustin S, Munier-Lamy C (2005) Radioprotection 40(1):587–591

    Article  Google Scholar 

  12. German KE, Firsova EV, Peretrukhin VF, Khizhnyak TV, Simonoff M (2003) Radiochemistry 45(3):250–256

    Article  CAS  Google Scholar 

  13. Mohapatra BR, Dinardo O, Gould WD, Koren DW (2010) Miner Eng 23:591–599

    Article  CAS  Google Scholar 

  14. Francis AJ (2007) J Alloys Compd 444–445:500–505

    Article  Google Scholar 

  15. Veglio F, Beolchini F (1997) Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  16. Nakajima A, Tsuruta T (2004) J Radioanal Nucl Chem 260:13–18

    Article  CAS  Google Scholar 

  17. Golab Z, Orlowska B, Smith RW (1991) Water Air Soil Pollut 60:99

    Article  Google Scholar 

  18. Andres Y, Maccordick HJ, Hubert J-C (1993) Appl Microbiol Biotechnol 39:413

    Article  CAS  Google Scholar 

  19. White C, Gads GM (1990) J Chem Technol Biotechnol 49:331

    Article  CAS  Google Scholar 

  20. Levinskaitė L, Smirnov A, Lukšienė B, Druteikienė R, Remeikis V, Baltrūnas D (2009) Nukleonika 54:285

    Google Scholar 

  21. Ekberg SA, Palmer PD, Newton TW, Clark DL (1994) Environ Sci Technol 28:1686–1690

    Article  Google Scholar 

  22. Icopini GA, Lack JG, Hersman LE, Neu MP, Boukahalfa H (2009) Appl Environ Microbiol 75(11):3641–3647

    Article  CAS  Google Scholar 

  23. Rusin PA, Quintana L, Brainard JR, Strietelmeier BA, Tait CD, Ekberg SA, Palmer PD, Newton TW, Clark DL (1994) Environ Sci Technol 28:1686

    Article  CAS  Google Scholar 

  24. Holt JC, Bergey DH (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  25. Gilman LC (1966) A manual of soil fungi. The Iowa State University Press, Ames, Iowa

    Google Scholar 

  26. Barnet HL (1967) Illustrated genera of imperfect fungi. Princeton University Press, Princeton

    Google Scholar 

  27. Barron GL (1968) The genera of hyphomycetes from the soil. The Williams and Wilkins Co, Baltimore

    Google Scholar 

  28. Ellis MB (1971) Dematiaceous hyphomycetes. Kew, Surrey, England: Commonwealth mycological Institute. Reprinted by Aberystwyth, Dyfed, U.K. Cambrian Printers

  29. Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi. Academic Press, New York

    Google Scholar 

  30. Kiffer E, Morelet M (1999) The deuteromycetes: mitosporic fungi. Classification and generic keys. Science Publishers Inc., USA

    Google Scholar 

  31. Watanabe T (2000) Pictorial atlas of soil and seed fungi: morphologies of cultural fungi and key to species, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  32. Williams ST, Sharpe ME (1989) In: Holt JG (ed) Bergey’s manual of systematic bacteriology, vol 4. Lippincott Williams and Wilkins Company, Baltimore

    Google Scholar 

  33. Pitt JI (1979) The genus Penicillium and its teliomorphic states Eupenicillium and Talaromyces. Academic Press, New York

    Google Scholar 

  34. Yun JI, Cho HR, Neck V, Altmaier M, Seibert A, Marquardt CM, Walther C, Fanghanel Th (2007) Radiochim Acta 95:89

    Article  CAS  Google Scholar 

  35. Lovett MB, Nelson DM (1981) Techniques for identifying transuranic speciation in aquatic environments. IAEA, Vienna

    Google Scholar 

  36. Talvitie NA (1971) Anal Chem 43:1827

    Article  CAS  Google Scholar 

  37. Kleinkauf H, von Dohren H, Dornauer H, Nesemann G (1986) Regulation of secondary metabolite formation. VCH, Weinheim

    Google Scholar 

  38. Lovley DR (1993) Annu Rev Microbiol 47:263–290

    Article  CAS  Google Scholar 

  39. Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Nature (Lond) 350:413–416

    Article  CAS  Google Scholar 

  40. Turick CE (2001) The physiological role and characterization of melanin produced by Shewanella algae BrY. Doctoral Dissertation, University of Hampshire, Durham, NC

Download references

Acknowledgments

The research leading to these results has received funding from the European Atomic Energy Community Seventh Framework Programme [FP7/2007-2013] under grant agreement no. 212287, Collaborative Project Recosy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Druteikienė.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Druteikienė, R., Lukšienė, B., Pečiulytė, D. et al. Interaction of biomass of aerobic bacteria and fungi with Pu(IV) at low pH. J Radioanal Nucl Chem 286, 387–391 (2010). https://doi.org/10.1007/s10967-010-0824-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0824-x

Keywords

Navigation