Skip to main content
Log in

Development of 177Lu-DOTA-anti-CD20 for radioimmunotherapy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Rituximab was successively labeled with 177Lu-lutetium chloride. 177Lu chloride was obtained by thermal neutron flux (4 × 1013 n cm−2 s−1) of natural Lu2O3 sample with a specific activity of 2.6–3 GBq/mg. The macrocyclic bifunctional chelating agent, N-succinimidyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-NHS) was prepared at 25 °C using DOTA, N-hydroxy succinimide (NHS) in CH2Cl2. DOTA-rituximab was obtained by the addition of 1 mL of a rituximab pharmaceutical solution (5 mg/mL, in phosphate buffer, pH 7.8) to a glass tube pre-coated with DOTA-NHS (0.01–0.1 mg) at 25 °C with continuous mild stirring for 15 h. Radiolabeling was performed at 37 °C in 24 h. Radio-thin layer chromatography showed an overall radiochemical purity of >98% at optimized conditions (specific activity = 444 MBq/mg, labeling efficacy; 82%). The final isotonic 177Lu-DOTA-rituximab complex was checked by gel electrophoresis for structure integrity control. Radio-TLC was performed to ensure that only one species was present after filtration through a 0.22 μm filter. Preliminary biodistribution studies in normal rats were carried out to determine complex distribution of the radioimmunoconjugate up to 168 h. The biodistribution data were in accordance with other antiCD20 radioimmunoconjugates already reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhi Y, Meiying Z, Baohe L, Yan H, Aping M, Qing Z, Xiaobao X (1996) Direct labelling of anti-gastric cancer monoclonal antibody 3H11 with 99mTc. J Radioanal Nucl Chem 206(1):59–67

    Article  CAS  Google Scholar 

  2. Ramos Suzarte M, Rodríguez N, Oliva JP, Iznaga N, Perera A, Morales A, Gonzalez N, Torres O, Rodríguez T (1999) ior egf/r3: a murine monoclonal antibody for diagnostic of epithelial tumors. J Radioanal Nucl Chem 240:499–503

    Article  CAS  Google Scholar 

  3. Liu N, Jin J, Zhang S, Mo S, Yang Y, Wang J, Zhou M (2001) 211At labeling of a monoclonal antibody and its Fab fragment: cytotoxicity on human gastric cancer cells and biodistribution in nude mice with tumor xenografts. J Radioanal Nucl Chem 247:129–133

    Article  CAS  Google Scholar 

  4. Crudo JL, Edreira MM, Obenaus ER, de Castiglia SG (2004) Labeling of the anti-melanoma 14f7 monoclonal antibody with rhenium-188-MAG3 chelate: conjugation optimization, in vitro stability and animal studies. J Radioanal Nucl Chem 261:337–342

    Article  CAS  Google Scholar 

  5. Kyle RA, Gertz MA, Greipp PR, Witzig TE, Lust JA, Lacy MQ, Therneau TM (1999) Long-term survival (10 years or more) in 30 patients with primary amyloidosis. Blood 93:1062–1066

    CAS  Google Scholar 

  6. Jalilian AR, Mirsadeghi L, Haji-Hosseini R (2007) Preparation and biodistribution of [67Ga]-DTPA-rituximab in normal rats. J Radioanal Nucl Chem 274(1):175–179

    Article  CAS  Google Scholar 

  7. Dietlein M, Pels H, Schulz H, Staak O, Borchmann P, Schomäcker K, Fischer T, Eschner W, Pogge von Strandmann E, Schicha H, Engert A, Schnell R (2005) Imaging of central nervous system lymphomas with iodine-123 labeled rituximab. Eur J Haematol 74:348–352

    Article  CAS  Google Scholar 

  8. Chappell LL, Ma D, Milenic DE, Garmestani K, Venditto V, Beitzel MP, Brechbiel MW (2003) Synthesis and evaluation of novel bifunctional chelating agents based on 1,4,7,10-Tetraazacyclododecane-N,N,N,N-Tetraacetic acid for radiolabeling proteins. Nucl Med Biol 30:581–595

    Article  CAS  Google Scholar 

  9. Hoffend J, Mier W, Schuhmacher J, Schmidt K, Dimitrakopoulou-Strauss A, Strauss LG, Kinscherf ERM, Haberkorna U (2005) Gallium-68-DOTA-albumin as a PET blood-pool marker: experimental evaluation in vivo. Nucl Med Biol 32:287–292

    Article  CAS  Google Scholar 

  10. Ugur O, Kothari PJ, Finn RD, Zanzonico P, Ruan S, Guenther I, Maecke HR, Larson SM (2002) Ga-66 labeled somatostatin analogue DOTA-DPhe1-Tyr3-octreotide as a potential agent for positron emission tomography imaging and receptor mediated internal radiotherapy of somatostatin receptor positive tumors. Nucl Med Biol 29:147–157

    Article  CAS  Google Scholar 

  11. McDevitt MR, Ma D, Simon J, Frank K, Scheinberg DA (2002) Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl Radiat Isot 57:841–847

    Article  CAS  Google Scholar 

  12. Smith CJ, Galib H, Sieckmanc GL, Hayes DL, Owen NK, Mazuru DG, Volkert WA, Hoffman TJ (2003) Radiochemical investigations of 177Lu-DOTA-8-Aoc-BBN[7-14]NH2: an in vitro/in vivo assessment of the targeting ability of this new radiopharmaceutical for PC-3 human prostate cancer cells. Nucl Med Biol 30:101–109

    Article  CAS  Google Scholar 

  13. Chappell LL, Dadachova E, Milenic DE, Garmestani K, Wu C, Brechbiel MW (2000) Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl Med Biol 27:93–100

    Article  CAS  Google Scholar 

  14. Zacchetti A, Coliva A, Luison E, Seregni E, Bombardieri E, Giussani A, Figini M, Canevari S (2009) (177)Lu-labeled MOv18 as compared to (131)I- or (90)Y-labeled MOv18 has the better therapeutic effect in eradication of alpha folate receptor-expressing tumor xenografts. Nucl Med Biol 36(7):759–770 Epub 2009 Jul 29

    Article  CAS  Google Scholar 

  15. Michel RB, Andrews PM, Rosario AV, Goldenberg DM, Mattes MJ (2005) 177Lu-antibody conjugates for single-cell kill of B-lymphoma cells in vitro and for therapy of micrometastases in vivo. Nucl Med Biol 32(3):269–278

    Article  CAS  Google Scholar 

  16. Brouwers AH, van Eerd JEM, Frielink C, Oosterwijk E, Oyen WJG, Corstens FHM, Boerman OC (2004) Optimization of radioimmunotherapy of renal cell carcinoma: labeling of monoclonal antibody cG250 with 131I, 90Y, 177Lu, or 186Re. J Nucl Med 45:327–337

    CAS  Google Scholar 

  17. Vallabhajosula S, Kuji I, Hamacher KA, Konishi S, Kostakoglu L, Kothari PA, Milowski MI, Nanus DM, Bander NH, Goldsmith SJ (2005) Pharmacokinetics and biodistribution of 111In and 177Lu-labeled J591 antibody specific for prostate-specific membrane antigen: prediction of 90Y-J591. Radiation dosimetry based on 111In or 177Lu? J Nucl Med 46:634–641

    CAS  Google Scholar 

  18. Tijink BM, Neri D, Leemans CR, Budde M, Dinkelborg LM, Stigter-van Walsum M, Zardi L, van Dongen GAMS (2006) Radioimmunotherapy of head and neck cancer xenografts using 131I-labeled antibody L19-SIP for selective targeting of tumor vasculature. J Nucl Med 47:1127–1135

    CAS  Google Scholar 

  19. Meredith RF, Partridge EE, Alvarez RD, Khazaeli MB, Plott G, Russell CD, Wheeler RH, Liu T, Grizzle WE, Schlom J, LoBuglio AF (1996) Intraperitoneal radioimmunotherapy of ovarian cancer with Lutetium-177-CC49. J Nucl Med 37:1491–1496

    CAS  Google Scholar 

  20. Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, Sandström M, Rosik D, Carlsson J, Lundqvist H, Wennborg A, Nilsson FY (2007) Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific affibody molecule. Cancer Res 67(6):2773–2782

    Article  CAS  Google Scholar 

  21. Schlom J, Siler K, Milenic DE, Eggensperger D, Colcher D, Miller LS, Houchens D, Cheng R, Kaplan D, Goeckeler W (1991) Monoclonal antibody-based therapy of a human tumor xenograft with a 177Lutetium-labeled immunoconjugate. Cancer Res 51:2889–2896

    CAS  Google Scholar 

  22. Yordanov AT, Hens M, Pegram C, Bigner DD, Zalutsky MR (2007) Antitenascin antibody 81C6 armed with 177Lu: in vivo comparison of macrocyclic and acyclic ligands. Nucl Med Biol 34(2):173–183. Epub 2007 Jan 17

    Google Scholar 

  23. Schott ME, Schlom J, Siler K, Milenic DE, Eggensperger D, Colcher D, Cheng R, Kruper WJ Jr, Fordyce W, Goeckeler W (1994) Biodistribution and preclinical radioimmunotherapy studies using radiolanthanide-labeled immunoconjugates. Cancer 73(3):993–998

    Article  CAS  Google Scholar 

  24. Postema EJ, Frielink C, Oyen WJ, Raemaekers JM, Goldenberg DM, Corstens FH, Boerman OC (2003) Biodistribution of 131I-, 186Re-, 177Lu-, and 88Y-labeled hLL2 (Epratuzumab) in nude mice with CD22-positive lymphoma. Cancer Biother Radiopharm 18(4):525–533

    Article  CAS  Google Scholar 

  25. Almqvist Y, Steffen AC, Tolmachev V, Divgi CR, Sundin A (2006) In vitro and in vivo characterization of 177Lu-huA33: a radioimmunoconjugate against colorectal cancer. Nucl Med Biol 33(8):991–998

    Article  CAS  Google Scholar 

  26. Meredith RF, Alvarez RD, Partridge EE, Khazaeli MB, Lin CY, Macey DJ, Austin JM Jr, Kilgore LC, Grizzle WE, Schlom J, LoBuglio AF (2001) Intraperitoneal radioimmunochemotherapy of ovarian cancer: a phase I study. Cancer Biother Radiopharm 16(4):305–315

    Article  CAS  Google Scholar 

  27. Mohsin H, Fitzsimmons J, Shelton T, Hoffman TJ, Cutler CS, Lewis MR, Athey PS, Gulyas G, Kiefer GE, Frank RK, Simon J, Lever SZ, Jurisson SS (2007) Preparation and biological evaluation of 111In-, 177Lu- and 90Y-labeled DOTA analogues conjugated to B72.3. Nucl Med Biol 34(5):493–502. Epub 2007 Jun 8

    Google Scholar 

  28. de Jong GM, Boerman OC, Heskamp S, Aarts F, Bleichrodt RP, Hendriks T (2009) Radioimmunotherapy prevents local recurrence of colonic cancer in an experimental model. Br J Surg 96(3):314–321

    Article  Google Scholar 

  29. Lee SY, Hong YD, Felipe PM, Pyun MS, Choi SJ (2009) Radiolabeling of monoclonal anti-CD105 with (177)Lu for potential use in radioimmunotherapy. Appl Radiat Isot 67(7–8):1366–1369. Epub 2009 Feb 25

    Google Scholar 

  30. Lee SY, Hong YD, Pyun MS, Felipe PM, Choi SJ (2009) Radiolabeling of monoclonal anti-vascular endothelial growth factor receptor 1 (VEGFR 1) with (177)Lu for potential use in radioimmunotherapy. Appl Radiat Isot 67(7–8):1185–1189. Epub 2009 Feb 14

    Google Scholar 

  31. Buchsbaum DJ, Rogers BE, Khazaeli MB, Mayo MS, Milenic DE, Kashmiri SV, Anderson CJ, Chappell LL, Brechbiel MW, Curiel DT (1999) Targeting strategies for cancer radiotherapy. Clin Cancer Res 5(10 Suppl):3048s–3055s

    CAS  Google Scholar 

  32. Firestone RB, Shirley VS, Baglin CM, Zipkin J (1996) Table of isotopes, 8th edition (CDROM). Version 1.0. Wiley-Interscience, New York

    Google Scholar 

  33. Jalilian AR, Mirsadeghi L, Yari-kamrani Y, Rowshanfarzad P, Kamali-dehghan M, Sabet M (2007) Development of [64Cu]-DOTA-anti-CD20 for targeted therapy. J Radioanal Nucl Chem 274(3):563–568

    Article  CAS  Google Scholar 

  34. Manual for reactor produced radioisotopes, IAEA, Vienna, 2003, IAEA-TECDOC-1340, ISBN 92–0–101103–2, ISSN 1011–4289, © IAEA, 2003, pp.71, Printed by the IAEA in Austria, January 2003

  35. Banerjee S, Das T, Chakraborty S, Samuel G, Korde A, Srivastava S, Venkatesha M, Pillai MRA (2004) 177Lu-DOTA-lanreotide: a novel tracer as a targeted agent for tumor therapy. Nucl Med Biol 31:753–759

    Article  CAS  Google Scholar 

  36. Lang L, Eckelman WC (1994) One-step synthesis of 18F labeled [18F]-N-succinimidyl 4-(fluoromethyl)benzoate for protein labeling. Appl Radiat Isot 45:1155–1163

    Article  CAS  Google Scholar 

  37. Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of the bacteriophage T4. Nature (London) 227:680–685

    Article  CAS  Google Scholar 

  38. www.pathologyoutlines.com/lymphoma.html

  39. Smith-jones P, Solit DB, Akhurst T, Afroze F, Rosen M, Larsen SM (2004) Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 22:701

    Article  CAS  Google Scholar 

  40. Press OW, Leonard JP, Coiffier B, Levy R, Timmerman J (2001) Immunotherapy of non-Hodgkin’s lymphomas. Hematology (Am Soc Hematol Educ Program):221–240 (Review)

  41. Rituxan® (Roche) pamphlet, P.1, chapter B. CCO Formulary, Revised 2004/2005

  42. Jalilian AR, Mirsadeghi L, Haji-Hosseini R, Khorami A, Shahidi F (2008) Preparation, quality control and biodistribution studies of [67Ga]-DOTA-anti-CD20. Radiochim Acta 96:167–174

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Tehran reactor operation team and Dr. M. A. Rowshanzamir for editorial corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Reza Jalilian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousefnia, H., Radfar, E., Jalilian, A.R. et al. Development of 177Lu-DOTA-anti-CD20 for radioimmunotherapy. J Radioanal Nucl Chem 287, 199–209 (2011). https://doi.org/10.1007/s10967-010-0676-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0676-4

Keywords

Navigation