Skip to main content
Log in

A simple technique for studying the dependence of radon and thoron exhalation rate from building materials on absolute humidity

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Indoor radon and thoron concentrations were dominated with their exhalation rate from building materials. Thus, the evaluation of exhalation rate with highly precise is important. This paper presented a new technique to measure the dependence radon/thoron exhalation rate, from building materials used in Japan, on absolute humidity. The measurement technique consisted of a solid state alpha detector equipped a ventilation-type chamber and humidity control system in a flow through method. The exhalation rate of dried samples (Indian red granite and Japanese gray granite) was measured at various absolute humidity levels in the range of 1–20 g cm−3. It was found that exhalation rate increased exponential with increasing of absolute humidity for both samples. Furthermore, the dependence of radon emanation coefficient on building material’s temperature was also studied using an accumulation chamber equipped with scintillation cell alpha detector. The emanation coefficient of dry sample increased proportionally with increasing the material’s temperature with a correlation factor of 0.88.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. UNSCEAR, Sources and effects of ionizing radiation. Report to the General Assembly with Scientific Annexes, United Nations Scientific Committee on the Effects of Atomic Radiation, New York, 2000

  2. Yasuoka Y, Ishikawa T, Tokonami S, Takahashi H, Sorimachi A, Shiogi M (2009) J Radioanal Nucl Chem 279:885–891

    Article  CAS  Google Scholar 

  3. The World Health Organization, Fact Sheet No.291: Radon and Cancer, June 2005. Available on http://www.who.int/mediacentre/factsheets/fs291/en/index.html access: 8 May 2009

  4. Sasaki T, Gunji Y, Okuda T (2004) J Nucl Sci Technol 41:142–151

    Article  CAS  Google Scholar 

  5. Nazaroff WW (1992) Rev Geophys 30:137–160

    Article  Google Scholar 

  6. Hosoda M, Sorimachi A, Yasuoka Y, Ishikawa T, Sahoo S, Furukawa M, Hassan NM, Tokonami S, Uchida S (2009) J Radiat Res 50:333–343

    Article  CAS  Google Scholar 

  7. Schery SD, Wilkening MH, Hart KP, Hill SD (1989) J Geophys Res 94:8567–8576

    Article  CAS  Google Scholar 

  8. Stranden E, Kolstad AK, Lind B (1984) Health Phys 47:480–485

    CAS  Google Scholar 

  9. Markkanen M, Arvela H (1992) Radiat Prot Dosim 45:269–272

    CAS  Google Scholar 

  10. Morawska L, Phillips CR (1993) Geochim Cosmochim Acta 57:1783–1797

    Article  CAS  Google Scholar 

  11. Iskandar D, Yamazawa H, Iida T (2004) Appl Radiat Isot 60:971–973

    Article  CAS  Google Scholar 

  12. Hosoda M, Shimo M, Sugino M, Furukawa M, Fukushi M (2007) J Nucl Sci Technol 44:664–672

    Article  CAS  Google Scholar 

  13. Koarashi J, Amano H, Andoh M, Iida T (2000) Radiat Prot Dosim 87:121–131

    CAS  Google Scholar 

  14. Kojima H, Nagano K (2005) J Atoms Elect 25:1–9

    Google Scholar 

  15. Hosoda M, Yamamoto Y, Harada K, Kori T, Fukushi M, Shimo M (2007) Jpn J Health Phys 42:89–97

    CAS  Google Scholar 

  16. Tuccimei P, Moroni M, Norcia D (2006) Appl Radiat Isot 64:254–263

    Article  CAS  Google Scholar 

  17. Osmanlioglo AE (2006) Radiat Prot Dosim 121:325–329

    Article  Google Scholar 

  18. Tokonami S, Yang M, Yonehara H, Yamada Y (2002) Rev Sci Instrum 73:69–72

    Article  CAS  Google Scholar 

  19. De Martino S, Sabbarese C, Monetti G (1998) Appl Radiat Isot 49:407–413

    Article  Google Scholar 

  20. Keller G, Schutz M (1988) Radiat Prot Dosim 24:43–46

    CAS  Google Scholar 

  21. Hosoda M, Ishikawa T, Sorimachi A, Hassan NM, Tokonami S, Uchida S (2010) J Nucl Sci Technol (in press)

  22. Sorimachi A, Sahoo SK Tokonami S (2009) Rev Sci Instrum 80: 015104-1-4

  23. Hassan NM, Ishikawa T, Hosoda M, Sorimachi A, Tokonami S, Fukushi M, Sahoo SK (2010) J Radioanal Nucl Chem 283:15–21

    Article  CAS  Google Scholar 

  24. Faheem M, Matiullah (2008) Radiat Meas 43:1458–1462

    Article  CAS  Google Scholar 

  25. Rogers VC, Nielson KK (1991) Health Phys 61:225–230

    Article  CAS  Google Scholar 

  26. Cosma C, Dancea F, Jurcut T, Ristoiu D (2001) Appl Radiat Isot 54:467–473

    Article  CAS  Google Scholar 

  27. Stranden E, Kolstad AK, Lind B (1984) Radiat Protect Dosim 7:55–58

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil M. Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, N.M., Tokonami, S. & Fukushi, M. A simple technique for studying the dependence of radon and thoron exhalation rate from building materials on absolute humidity. J Radioanal Nucl Chem 287, 185–191 (2011). https://doi.org/10.1007/s10967-010-0665-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0665-7

Keywords

Navigation