Skip to main content
Log in

Experimental comparison of the relative yield of 3γ/2γ positron annihilation using semiconductor and scintillation detectors

  • Radiochemistry
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The yield of three photon positron annihilation is measured using semiconductor and scintillation detectors in a comparison for applications in positron emission tomography, particularly in the exploitation of three photon positron annihilation imaging where good energy resolution and good efficiency are required. In this experimental study four detectors, High-purity Germanium (HPGe), Sodium Iodide (NaI(Tl)), Lanthanum Chloride (LaCl3:10%Ce3+) and Lanthanum Bromide (LaBr3:5%Ce3+) were used. The peak-to-peak method was used with a 22Na source to determine these yields. Aluminium was employed as a reference material as its high electron density reduces positronium formation and lifetimes. Teflon was also used in order to enhance the formation of ortho-positronium, since quenching is low, leading to increased three photon positron annihilation. The relative 3γ/2γ yields obtained were (3.04±0.11)·10−2, (2.17±0.11)·10−2, (3.26±0.10)·10−2 and (2.03±0.11)·10−2 for LaBr3:Ce, LaCl3:Ce, NaI(Tl) and HPGe detectors, respectively. Among these detectors LaBr3:Ce proved to be the detector of choice for three photon imaging applications as it has both good energy resolution and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kacperski, N. M. Spyrou, Nucl. Sci. Sym. Con. Rec, IEEE, 2004.

  2. K. Kacperski, N. M. Spyrou, F. A. Smith, IEEE Trans. Med Imag., 23 (2004) 525.

    Article  Google Scholar 

  3. K. Kacperski, N. M. Spyrou, Phys. Med. Biol., 50 (2005) 5679.

    Article  Google Scholar 

  4. N. M. Spyrou, K. Kacperski, S. Kafala, E. Abuelhia, Intern. J. Sci. Res., 16 (2005).

  5. E. Abuelhia, K. Kacperski, N. M. Spyrou, J. Radioanal. Nucl. Chem., 271 (2007) 489.

    Article  CAS  Google Scholar 

  6. M. Charlton, J. W. Humberston, Positron Phys. Cambridge, U.K. Cambridge Univ. Press, 2001.

  7. D. W. Gidley, K. A. Marko, A. Rich, Phys. Rev. Lett., 36 (1976) 395.

    Article  CAS  Google Scholar 

  8. Tang Xiao-Wei, Wu Gun-Hung, Wang Yun-Yu, Positron Annihilation, North Holland Publishing Company, 1982, p. 880.

  9. C. D’ambrosio, F. De Notaristefani, G. Hull, V. Orsolini Cencelli, R. Pani, Nucl. Instr. Meth., A556 (2006) 187.

    Google Scholar 

  10. A. Kuhn, S. Surti, J. S. Karp, P. S. Raby, K. S. Shah, A. E. Perkins, G. Muehllehner, IEEE Trans. Nucl. Sci., NS-51 (2004) 2550.

    Article  CAS  Google Scholar 

  11. G. F. Knoll, Radiation Detection and Measurement, John Wiley and Sons, New York, 2000.

    Google Scholar 

  12. W. W. Moses, K. S. Shah, Nucl. Instr. Meth., A537 (2005) 317.

    Google Scholar 

  13. G. Chandra, V. G. Kulkarni, R. G. Lagu, B. V. Thosar, Phys. Lett., 25A(5) (1967) 368.

    Google Scholar 

  14. S. K. Andrukhovich, A. V. Berestov, N. M. Antovich, O. N. Metelitsa, Acta Physica Polonica A, 99, No 3–4, 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alkhorayef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkhorayef, M., Abuelhia, E., Alzimami, K. et al. Experimental comparison of the relative yield of 3γ/2γ positron annihilation using semiconductor and scintillation detectors. J Radioanal Nucl Chem 280, 315–318 (2009). https://doi.org/10.1007/s10967-009-0519-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-009-0519-3

Keywords

Navigation