Skip to main content
Log in

Radionuclidic standardization by primary methods: An overview

  • Radioanalytical Chemistry
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Primary methods of radionuclidic standardization serve as the underlying basis of the physical measurement standards of activity that are needed in virtually every sub-discipline of radioanalytical and nuclear chemistry. Primary methods refer to the direct measurement of the number of nuclear transformations that occur per unit time, without recourse to other calibrations or standards. Such measurements, leading to the development and dissemination of radioactivity standards, are primarily performed under the purview of national metrology laboratories, like the National Institute of Standards and Technology (NIST) in the USA. This paper briefly reviews some of the various primary methods that have been developed by many such laboratories over many years. Their features and their role in ensuring the quality of radioactivity measurements are highlighted by several primary standardizations that have been recently performed at NIST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Quinn, Metrologia, 34 (1997) 61.

    Article  Google Scholar 

  2. B. N. Taylor, The International System of Units (SI), NIST Special Publ. 330, Natl. Inst. Stds & Tech., Gaithersburg, MD, USA, 2001.

    Google Scholar 

  3. K. Debertin, Appl. Radiation Isotopes, 47 (1996) 423.

    Article  CAS  Google Scholar 

  4. National Institute of Standards and Technology (NIST), Standard Reference Materials for Radioactivity, NIST, Gaithersburg, 2006. A current, on-line catalog is available at http://ts.nist.gov/measurementservices/referencematerials/index.cfm

    Google Scholar 

  5. R. Collé, Trans. Amer. Nucl. Soc., 97 (2007) 355.

    Google Scholar 

  6. B. M. Coursey, R. Collé, J. S. Coursey, Appl. Radiation Isotopes, 56 (2002) 5.

    Article  CAS  Google Scholar 

  7. W. B. Mann, Int. J. Appl. Radiation Isotopes, 1 (1956) 3.

    Article  CAS  Google Scholar 

  8. National Academy of Sciences (NAS), National Uses and Needs for Standard Radioactive Materials, NAS, Washington, DC, 1970.

    Google Scholar 

  9. L. M. Cavallo, B. M. Coursey, S. B. Garfinkel, J. M. R. Hutchinson, W. B. Mann, Nucl. Instr. Nucl. Meth., 112 (1973) 5.

    Article  CAS  Google Scholar 

  10. R. Collé, Trans. Amer. Nucl. Soc., 39 (1981) 84.

    Google Scholar 

  11. R. Collé, Measurements for the Safe Use of Radiation, National Bureau of Standards (NBS) Special Publ. 456, NBS, Washington, DC, 1976, p. 71.

    Google Scholar 

  12. K. G. W. Inn, Z. Lin, Z. Wu, C. McMahon, C. Liu, R. Holloway, J. Harvey, I. L. Larsen, T. Beasley, C. A. Huh, S. Morton, D. McCurdy, P. Germain, J. Handl, M. Yamamoto, B. Warren, T. H. Bates, A. Holms, B. R. Harvey, D. S. Popplewell, M. J. Woods, S. Jerome, K. J. Odell, P. Young, I. Croudace, J. Radioanal. Nucl. Chem., 248 (2001) 227.

    Article  CAS  Google Scholar 

  13. National Council on Radiation Protection and Measurements (NCRP) A Handbook of Radioactivity Measurements Procedures, Second Ed., NCRP Report No. 58, NCRP, Washington, DC, 1985, p. 17.

    Google Scholar 

  14. W. B. Mann, A. Rytz, A. Spernol, Radioactivity Measurements: Principles and Practice, Pergamon Press, 1988, p. 4.

  15. M. Woods, P. De Felice, Appl. Radiation Isotopes, 64 (2006) 1091 (Proccedings of the 15th International ICRM Conference; refer to references therein for citations of earlier proceedings).

    Article  CAS  Google Scholar 

  16. S. Pommé, Metrologia, 44 (2007) S17.

    Article  CAS  Google Scholar 

  17. D. D. Hoppes, Environ. Int., 10 (1984) 99.

    Article  CAS  Google Scholar 

  18. NCRP, ibid., p. 100.

    Google Scholar 

  19. J. M. R. Hutchinson, L. L. Lucas, P. A. Mullen, Int. J. Appl. Radiation Isotopes, 27 (1976) 43.

    Article  CAS  Google Scholar 

  20. L. L. Lucas, Standardization of Alpha-Particle Sources, ASTM Special Technical Publ., 698, American Society for Testing and Materials, Philadelphia, 1980, p. 342.

    Google Scholar 

  21. NCRP, ibid., p. 109.

    Google Scholar 

  22. S. B. Garfinkel, W. B. Mann, F. J. Schima, M. P. Unteweger, Nucl. Instr. Meth., 112 (1973) 59.

    Article  CAS  Google Scholar 

  23. M. P. Unterweger, Metrologia, 44 (2007) S79.

    Article  CAS  Google Scholar 

  24. J. M. R. Hutchinson, J. L. Lantz, W. B. Mann, P. A. Mullen, R. H. Roddriguez-Pasques, IEEE Trans. Nucl. Sci., NS19 (1972) 117.

    Article  Google Scholar 

  25. J. M. R. Hutchinson, W. B. Mann, P. A. Mullen, Nucl. Instr. Meth., 112 (1973) 187.

    Article  CAS  Google Scholar 

  26. B. Deneke, Nucl. Instr. Meth., A339 (1994) 92.

    Google Scholar 

  27. M. F. L’Annunziata, Handbook of Radioactivity Analysis, 2nd Ed., Academic Press, New York, 2003, p. 347; and references therein.

    Google Scholar 

  28. R. Broda, P. Cassette, K. Kossert, Metrologia, 44 (2007) S36.

    Article  CAS  Google Scholar 

  29. W. B. Mann, M. P. Unterweger, Appl. Radiation Isotopes, 46 (1995) 185.

    Article  CAS  Google Scholar 

  30. R. Collé, Metrologia, 44 (2007) S118.

    Article  CAS  Google Scholar 

  31. R. Collé, B. E. Zimmerman, Appl. Radiation Isotopes, 56 (2001) 223.

    Article  Google Scholar 

  32. E. LeBlanc, P. de Marcillac, N. Coron, J. LeBlanc, M. Loidl, J. F. Metge, J. Bouchard, Appl. Radiation Isotopes, 56 (2002) 245.

    Article  CAS  Google Scholar 

  33. NCRP, ibid., p. 117.

    Article  Google Scholar 

  34. W. Bambynek, Standardization of Radionuclides, International Atomic Energy Commission, Vienna, 1971, p. 373.

    Google Scholar 

  35. NCRP, ibid., p. 117.

    Google Scholar 

  36. C. Bobin, Metrologia, 44 (2007) S27.

    Article  CAS  Google Scholar 

  37. NCRP, ibid., p. 75.

    Google Scholar 

  38. R. Fitzgerald, Trans. Amer. Nucl. Soc., 97 (2007) 359.

    Google Scholar 

  39. L. L. Lucas, Appl. Radiation Isotopes, 49 (1998) 49.

    Article  Google Scholar 

  40. R. Broda, Appl. Radiation Isotopes, 58 (2003) 585.

    Article  CAS  Google Scholar 

  41. R. Collé, B. E. Zimmerman, J. Res. Natl. Inst. Stds. Tech., 102 (1997) 523.

    Google Scholar 

  42. R. Collé, B. E. Zimmerman, P. Cassette, L. LaureanoPerez, Appl. Radiation Isotopes, 66 (2008) 60.

    Article  CAS  Google Scholar 

  43. B. E. Zimmerman, R. Collé, J. T. Cessna, Appl. Radiation Isotopes, 60 (2004) 455.

    Google Scholar 

  44. J. Bouchard, P. Cassette, Appl. Radiation Isotopes, 52 (2000) 669.

    Article  CAS  Google Scholar 

  45. R. Collé, L. Laureano-Perez, P. Volkovitsky, J. Res. Natl. Inst. Stds. Tech., (2008) to be published.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Collé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collé, R. Radionuclidic standardization by primary methods: An overview. J Radioanal Nucl Chem 280, 265–273 (2009). https://doi.org/10.1007/s10967-009-0509-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-009-0509-5

Keywords

Navigation