Skip to main content

Effect of pH, fulvic acid and temperature on sorption of Th(IV) on zirconium oxophosphate

Abstract

Sorption of Th(IV) on Zr2O(PO4)2 as a function of contact time, reaction temperature, pH, ionic strength and solid-to-liquid ratio (m/V) is studied under ambient condition by using batch technique. Effects of fulvic acid (FA), phosphate, sulfate and citrate on Th(IV) sorption are investigated in detail. A pseudo-second-order rate equation is used to simulate the kinetic sorption. The removal of Th(IV) increases with increasing pH and hardly depends on ionic strength. Sorption of Th(IV) increases with increasing m/V and reaction temperature. The presence of FA and phosphate enhances the sorption of Th(IV) on Zr2O(PO4)2 while sulfate and citrate decrease the sorption. The Langmuir and Freundlich models are used to simulate the sorption isotherm of Th(IV) on Zr2O(PO4)2 at different temperatures. The thermodynamic data (i.e., ∆H 0, ∆S 0, ∆G 0) are calculated from temperature dependent sorption isotherms. The results suggest that the sorption process of Th(IV) on Zr2O(PO4)2 is spontaneous and endothermic.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Drot R, Simoni E, Alnot M, Ehrhardt JJ (1998) J Colloid Interface Sci 205:410

    Article  CAS  Google Scholar 

  2. Lomenech C, Simoni E, Drot R, Ehrhardt JJ, Mielczarski J (2003) J Colloid Interface Sci 261:221

    Article  CAS  Google Scholar 

  3. Drot R, Lindecker C, Fourest B, Simoni E (1998) New J Chem 22:11051109

    Google Scholar 

  4. Ordonez-Regil E, Drot R, Simoni E, Ehrhardt JJ (2002) Langmuir 18:7977

    Article  CAS  Google Scholar 

  5. Fuller CC, Bargar JR, Davis JA, Piana MJ (2002) Environ Sci Technol 36:158

    Article  CAS  Google Scholar 

  6. Perrone J, Fourest B, Giffaut E (2002) J Colloid Interface Sci 249:441

    Article  CAS  Google Scholar 

  7. Wu L, Firsling W, Schindler PW (1991) J Colloid Interface Sci 147:178

    Article  CAS  Google Scholar 

  8. Zamin M, Shaheen T, Dyer A (1994) J Radioanal Nucl Chem 182:345

    Article  CAS  Google Scholar 

  9. Song YJ, Zhang H, Yang QL, Zhao AM (1995) J Radioanal Nucl Chem 198:375

    Article  CAS  Google Scholar 

  10. Ordonez-Regil E, Drot R, Simoni E (2003) J Colloid Interface Sci 263:391

    Article  CAS  Google Scholar 

  11. Finck N, Drot R, Mercier-Bion F, Simoni E, Catalette H (2007) J Colloid Interface Sci 321:230

    Article  Google Scholar 

  12. Almazan-Torres MG, Drot R, Mercier-Bion F, Catalette H, Auwer CD, Simoni E (2008) J Colloid Interface Sci 323:42

    Article  CAS  Google Scholar 

  13. Drot R, Simoni E (1999) Langmuir 15:4820

    Article  CAS  Google Scholar 

  14. Clavier N, Kerdaniel EF, Dacheuk N, Coustumer P, Drot R, Ravaux J, Simoni E (2006) J Nucl Mater 249:304

    Article  Google Scholar 

  15. Wang DL, Qian LJ, Zhang ML, Xu JZ, Wu WS (2008) J Nucl Radiochem 30:3 (in Chinese)

    CAS  Google Scholar 

  16. Guo ZJ, Niu LJ, Tao ZY (2005) J Radioanal Nucl Chem 266:333

    Article  CAS  Google Scholar 

  17. Zhang HX, Yuan JQ, Tao ZY (2007) J Radioanal Nucl Chem 273:465

    Article  CAS  Google Scholar 

  18. Zhang HX, Dong Z, Tao ZY (2006) Colloids Surf A 278:46

    Article  CAS  Google Scholar 

  19. Fan QH, Wu WS, Song XP, Xu JZ, Hu J, Niu ZW (2008) Radiochim Acta 96:159

    Article  CAS  Google Scholar 

  20. Sheng GD, Hu J, Wang XK (2008) Appl Radiat Isot 66:1313

    Article  CAS  Google Scholar 

  21. Li WJ, Tao ZY (2002) J Radioanal Nucl Chem 254:187

    Article  CAS  Google Scholar 

  22. Chang P, Yu S, Chen T, Ren A, Chen C, Wang X (2007) J Radioanal Nucl Chem 274:153

    Article  CAS  Google Scholar 

  23. Humelnicu D, Drochioiu G, Sturza MI, Cecal A, Popal K (2006) J Radioanal Nucl Chem 270:637

    Article  CAS  Google Scholar 

  24. Tan XL, Wang XK, Chen CL, Sun AH (2007) Appl Radiat Isot 65:375

    Article  CAS  Google Scholar 

  25. Wu WS, Fan QH, Xu JZ, Niu ZW, Lu SS (2007) Appl Radiat Isot 65:1108

    Article  CAS  Google Scholar 

  26. Noh JS, Schwarz JA (1988) J Colloid Interface Sci 130:157

    Article  Google Scholar 

  27. Fan QH, Shao DD, Hu J, Wu WS, Wang XK (2008) Surf Sci 602:778

    Article  CAS  Google Scholar 

  28. Payne TE (1999) Uranium (VI) interaction with mineral surfaces: controlling factors and surface complexation modeling. PhD Thesis, University of New South Wales

  29. Cromeres L, Moulin V, Fourest B, Guillaumont R, Giffaut E (1998) Radiochim Acta 82:249

    Google Scholar 

  30. Osthols E, Bruno J, Grenthe L (1994) Geochim Cosmochim Acta 58:613

    Article  Google Scholar 

  31. Jakobsson AM (1999) J Colloid Interface Sci 220:367

    Article  CAS  Google Scholar 

  32. Bradbury MH, Baeyens B (2002) Geochim Cosmochim Acta 66:2325

    Article  CAS  Google Scholar 

  33. Das DK, Parthak PN, Kumar S, Manchanda VK (2009) J Radioanal Nucl Chem 281:449

    Article  CAS  Google Scholar 

  34. Parthak PN, Choppin GR (2007) J Radioanal Nucl Chem 274:517

    Article  Google Scholar 

  35. Guo ZJ, Chao Y, Xu J, Wu WS (2009) Colloids Surf A 336:123

    Article  CAS  Google Scholar 

  36. Chen CL, Wang XK (2007) Appl Geochem 22:436

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from National Natural Science Foundation of China (20871062, J0630962) was acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Wangsuo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lijuan, Q., Jianing, Z., Peizhuo, H. et al. Effect of pH, fulvic acid and temperature on sorption of Th(IV) on zirconium oxophosphate. J Radioanal Nucl Chem 283, 653–660 (2010). https://doi.org/10.1007/s10967-009-0428-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-009-0428-5

Keywords

  • Th(IV)
  • Zr2O(PO4)2
  • Sorption
  • pH
  • FA
  • Temperature