Skip to main content
Log in

Comparative extraction efficiencies of tri-n-butyl phosphate and N,N-dihexyloctanamide for uranium recovery using supercritical CO2

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Extraction of uranium from tissue paper, synthetic soil, and from its oxides (UO2, UO3 and U3O8) was carried out using supercritical carbon dioxide modified with methanol solutions of extractants such as tri-n-butyl phosphate (TBP) or N,N-dihexyl octanamide (DHOA). The effects of temperature, pressure, extractant/nitric acid (nitrate) concentration, and of hydrogen peroxide on uranium extraction were investigated. The dissolution and extraction of uranium in supercritical CO2 modified with TBP, from oxide samples followed the order: UO3 ≫ UO2 > U3O8. Addition of hydrogen peroxide in the modifier solution enhanced the dissolution/extraction of uranium in dynamic mode. DHOA appeared better than TBP for recovery of uranium from different oxide samples. Similar enhancement in uranium extraction was observed in static mode experiments in the presence of hydrogen peroxide. Uranium estimation in the extracted fraction was carried out by spectrophotometry employing 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP) as the chromophore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wai CM, Waller B (2000) Dissolution of metal species in supercritical fluids—principles and applications. Ind Eng Chem Res 39:4837–4841

    Article  CAS  Google Scholar 

  2. Wang JS, Wai CM (2005) Dissolution of precious metal in supercritical carbon dioxide. Ind Eng Chem Res 44:4837–4841

    Google Scholar 

  3. Lin Y, Wai CM, Jean FM, Brauer RD (1994) Supercritical fluid extraction of thorium and uranium ions from solid and liquid materials with fluorinated β-diketones and tributyl phosphate. Environ Sci Technol 28:1190–1193

    Article  CAS  Google Scholar 

  4. Wang JS, Koh M, Wai CM (2004) Nuclear laundry using supercritical fluid solutions. Ind Eng Chem Res 43:1580–1585

    Article  CAS  Google Scholar 

  5. Chang F, Kim H, Joo B, Park K, Kim H (2008) Novel CO2-soluble pyridine derivatives and the extraction of heavy metals into Sc-CO2. J Supercrit Fluids 45:43–50

    Article  CAS  Google Scholar 

  6. Meguro Y, Iso S, Sasaki T, Yoshida Z (1998) Solubility of organophosphorous metal extractants in supercritical carbon dioxide. Anal Chem 70:774–779

    Article  CAS  Google Scholar 

  7. Samsonov MD, Wai CM, Lee S-C, Kulyako Y, Smart NG (2001) Dissolution of uranium dioxide in supercritical fluid carbon dioxide. Chem Commun 1868–1869

  8. Shadrin A, Kamachev V, Murzin A, Shafikov D (2007) Extraction of nitric acid and uranyl nitrate by TBP in HFC-134a. J Supercrit Fluids 42:347–350

    Article  CAS  Google Scholar 

  9. Swada K, Uruga K, Koyama T, Shimada T, Mori Y, Enokida Y, Yamamoto I (2005) Stoichiometric relation for extraction of uranium from UO2 powder using TBP complex with HNO3 and H2O in supercritical CO2. J Nucl Sci Technol 42:301–304

    Article  Google Scholar 

  10. Toews KL, Smart NG, Wai CM (1996) Complexation and transport of uranyl nitrate by supercritical carbon dioxide with organophosphorous reagents. Radiochim Acta 75:179–184

    CAS  Google Scholar 

  11. Kumar R, Sivaraman N, Srinivasan TG, Vasudeva Rao PR (2002) Studies on supercritical fluid extraction of uranium from tissue matrix. Radiochim Acta 90:141–145

    Article  CAS  Google Scholar 

  12. Kumar R, Sivaraman N, Vadivu ES, Srinivasan TG, Vasudeva Rao PR (2003) Complete removal of uranyl nitrate from tissue matrix using supercritical fluid extraction. Radiochim Acta 91:197–201

    Article  CAS  Google Scholar 

  13. Kumar P, Pal A, Saxena MK, Ramakumar KL (2008) Supercritical fluid extraction of uranium and thorium from solid matrices. Desalination 232:71–79

    Article  CAS  Google Scholar 

  14. Kumar P, Pal A, Saxena MK, Ramakumar KL (2007) Supercritical fluid extraction of thorium from tissue matrix employing organophosphorous reagents. Radiochim Acta 95:701–708

    Article  CAS  Google Scholar 

  15. Rao A, Kumar P, Ramakumar KL (2008) Study of effects of different parameters on supercritical fluid extraction of uranium from acidic solutions employing TBP as co-solvent. Radiochim Acta 96:787–798

    Article  CAS  Google Scholar 

  16. Wai CM (2006) Reprocessing of spent nuclear fuel with supercritical carbon dioxide. ACS Symp Ser 933:57–67

    Article  CAS  Google Scholar 

  17. Sato K, Koma Y, Nakabayashi H, Yano K, Amamoto I, Kitajima S, Kobayashi T, Higuchi T, Nakanishi S, Yoshiuji T (2005) Conceptual design study and evaluation of advanced reprocessing plants in the feasibility study on commercialized FR cycle systems in Japan. In: Proceedings of GLOBAL-2005, Tsukuba, Japan, 9–13 October, 2005, paper no. 502

  18. Myasoedov BF, Kulyako YuM, Trofimov TI, Samsonov MD, Malikov DA, Spivakov BYa (2009) Recovery of uranium and plutonium from simulated spent nuclear fuel by adducts of organic reagents with HNO3 followed by their separation from fission products by counter current chromatography. Radiochim Acta 97:473–477

    Article  CAS  Google Scholar 

  19. Trofimov TI, Samsonov MD, Kulyako YM, Myasoedov BF (2004) Dissolution and extraction of actinide oxides in supercritical carbon dioxide containing the complex of tri-n-butylphosphate with nitric acid. C R Chim 7:1209–1213

    CAS  Google Scholar 

  20. Shimada T, Ogumo S, Mori Y, Ishihara N, Kosaka Y, Miura S, Koyama T, Enokida Y, Yamamoto I (2003) Direct extraction process of U with super-DIREX reprocessing method. Global 2003: atoms for prosperity: updating Eisenhowers global vision for nuclear energy, New Orleans, USA, pp 1248–1249

  21. Kulyako Yu, Shadrin A, Myasoedov BF (2005) Extraction of actinoids from their dioxides with supercritical and liquid carbon dioxide containing the adduct of tri-n-butylphosphate with nitric acid. Rossijskij Khimicheskij Zhurnal (Zhurnal Rossijskogo Khimicheskogo Obshchestva Im. D.I. Mendeleeva) 49(2):97–102

  22. Shadrin A, Muzrin A, Lumpov A, Romanovsky V (2008) The possibility of reprocessing of spent nuclear fuel using super critical fluids. Solvent Extr Ion Exch 26:797–806

    Article  CAS  Google Scholar 

  23. Manchanda VK, Pathak PN (2004) Amides and diamides as promising extractants in the back end of the nuclear fuel cycle: an overview. Sep Purif Technol 35:85–103

    Article  CAS  Google Scholar 

  24. Peper SM, Brodnax LF, Field SE, Zehnder RA, Valdez SN, Runde WH (2004) Kinetic study of the oxidative dissolution of UO2 in aqueous carbonate media. Ind Eng Chem Res 43:8188–8193

    Article  CAS  Google Scholar 

  25. Peper SM, McNamara BK, O’Hara MJ, Douglas M (2008) Aqueous dissolution of uranium oxides in oxidizing alkaline media. In: Seventh international conference on nuclear and radiochemistry, NRC7, Budapest, Hungary, 24–29 August

  26. Mondino AV, Wilkinson MV, Manzini AC (2001) A new method for alkaline dissolution of uranium metal foil. J Radioanal Nucl Chem 247:111–114

    Article  CAS  Google Scholar 

  27. Johnson DA, Florence TM (1971) Spectrophotometric determination of uranium(VI) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Anal Chim Acta 53:73–79

    Article  CAS  Google Scholar 

  28. Lin Y, Brauer RD, Laintz KE, Wai CM (1993) Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated β-diketone. Anal Chem 65:2549–2551

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Manchanda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanekar, A.S., Pathak, P.N., Mohapatra, P.K. et al. Comparative extraction efficiencies of tri-n-butyl phosphate and N,N-dihexyloctanamide for uranium recovery using supercritical CO2 . J Radioanal Nucl Chem 283, 789–796 (2010). https://doi.org/10.1007/s10967-009-0423-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-009-0423-x

Keywords

Navigation