Skip to main content
Log in

Frequency distribution, isotopic composition and physical characterization of plutonium-bearing particles from the Fig-Quince zone on Runit Island, Enewetak Atoll

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Runit Island on Enewetak Atoll was very heavily impacted by the U.S. nuclear testing campaign in the northern Marshall Islands (1946–58). The primary source of contamination on Runit Island was the 1958 Quince safety test where a large quantity of device plutonium (Pu) was scattered over the area near the GZ. A second low-yield device was detonated on the same site 10 days later, further disturbing the soil and leaving behind a very heterogeneous pattern of contamination including milligram-size particles of plutonium. A limited cleanup of the Fig-Quince zone was carried out in 1979. During this period, the effectiveness of the cleanup operations was primarily evaluated on the basis of bulk soil concentration data with little consideration given to the heterogeneity and long-term material-, biological-, and environmental-specific impacts of residual high activity (hot) particle contamination. The aim of the present study was twofold; (i) to characterize the levels and distribution of residual contamination in the Fig-Quince zone, and (ii) to develop pertinent data on the frequency distribution, elemental and isotopic composition, and physico-chemical properties of hot particles isolated from surface soils from Fig-Quince with a view towards providing recommendations on the future management and possible cleanup of the site. Today, Runit Island remains under an administrative quarantine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. UNSCEAR (2000) Sources and effects of ionizing radiation. United States Scientific Committee on the effects of atomic radiation, UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, Vol 1: sources. United Nations, New York, 654 pp

  2. Noshkin VE, Robison WL (2007) Health Phys 73:234

    Article  Google Scholar 

  3. Hamilton TF (2004) Linking legacies of the cold war to arrival of anthropogenic radionuclides in the oceans through the 20th century. In: Livingston HD (ed) Marine radioactivity, vol 6. Elsevier Science, Amsterdam, pp 30–87

    Google Scholar 

  4. U.S. Department of Energy (1982) Enewetak radiological Support Project, Final Report. In: B Freisen (ed) U.S. DOE, Nevada Operations Office, NVO-213, Las Vegas, Nevada, pp 336–369

  5. Davisson ML, Hamilton TF (2008) Report LLNL-TR-403015, Lawrence Livermore National Laboratory, 50 pp

  6. Statcher JW, Ansoborilo E, Phipps AW (2000) Radiat Prot Dosimetry 92:201

    Google Scholar 

  7. Ansoborlo E, Statcher J (2000) Radiat Prot Dosimetry 92:139

    CAS  Google Scholar 

  8. Salbu B (2000) Radiat Prot Dosimetry 92:49

    CAS  Google Scholar 

  9. Salbu B (2008) Actinides in the environment. In: Kudo A (ed) Plutonium in the environment, vol 1. Elsevier, Oxford, pp 121–138

    Chapter  Google Scholar 

  10. Betti M, Eriksson M, Jernström J, Tamborini G (2008) Analysis of environmental radioactivity. In: Povenic PP (ed) Radioactivity in the environment, vol 11. Elsevier, Oxford, pp 355–370

    Google Scholar 

  11. Madjoukov IG, Burns K, Madjoukova B, Vapirev EI, Tsacheva T (1992) Radiat Prot Dosimetry 40:235

    Google Scholar 

  12. Sadalls FJ, Segal MG, Victorva N (1993) J Environ Radioact 18:5

    Article  Google Scholar 

  13. Dorrian MD (1997) Radiat Prot Dosimetry 69:117

    CAS  Google Scholar 

  14. Salbu B, Krekling T, Oughton D (1998) Analyst 123:843

    Article  CAS  Google Scholar 

  15. Salbu B, Janssens K, Kreklin T, Oughton D (1999) Micro-X-ray absorption tomography and micro-XANES for characterization of fuel particles. http://www.esrf.fr/info/science/highlights/1999/chemistry/xanes.html

  16. Cuddihy RG, Finch GL, Newton GJ, Hahn FF, Mewhinney JA, Rotenberg SJ, Powers DA (1989) Environ Sci Technol 23:89

    Article  CAS  Google Scholar 

  17. Van Der Veen J, Van Der Wijk A, Mook WG (1996) Nature 323:399

    Article  Google Scholar 

  18. Salbu B, Krekling T, Lind OC, Oughton DH, Drakopoulos M, Simionovici A, Snigirev I, Snigirev A, Weitkamp T, Adams F, Janssens K, Kashparov VA (2001) Nucl Instrum Methods Phys Res A 467–468:1249

    Article  Google Scholar 

  19. Salbu B, Janssens K, Lind OC, Proost K, Danesi PR (2003) J Environ Radioact 64:167

    Article  CAS  Google Scholar 

  20. Salbu B, Lind OC, Skipperud L (2004) J Environ Radioact 74:233

    Article  CAS  Google Scholar 

  21. Jernström J, Eriksson M, Osán J, Tamborini G, Török Sz, Simon R, Falkenberg G, Alsecz A, Betti M (2004) J Anal At Spectrom 19:1428

    Article  CAS  Google Scholar 

  22. Eriksson M, Osán J, Jernström J, Wegrzynek D, Simon R, Chinea-Cano E, Markowicz A, Bamford S, Tamborini G, Török Sz, Falkenberg GG, Alsecz A, Dahgaard H, Wobrauschek P, Streli C, Zeoger N, Betti M (2005) Spectrochim Acta Part B 60:455

    Article  CAS  Google Scholar 

  23. Pöllanen R, Ketterer ME, Lehto S, Hokkanen M, Ikaheimonen TK, Siiskonen T, Moring M, Rubio Montero MP, Martin Sanchez A (2006) J Environ Radioact 90:15

    Article  CAS  Google Scholar 

  24. Jernström J, Eriksson M, Simon R, Tamborini G, Bildstein O, Carlos Marquez R, Kehl SR, Hamilton TF, Ranebo Y, Betti M (2006) Spectrochim Acta Part B 61:971

    Article  CAS  Google Scholar 

  25. Bielewski M, Eriksson M, Himbert J, Betti M, Falkenberg IG, Hamilton TF (submitted) Spectrochim Acta Part B

  26. Martinelli RE, Hamilton TF, Williams RW, Kehl SR (this issue) J Radioanal Nucl Chem

  27. Eriksson M, Ljunggren L, Hindorf C (2002) Nucl Instrum Methods Phys Res A 488:375

    Article  CAS  Google Scholar 

  28. Simon R, Buth G, Hagelstein M (2003) Nucl Instrum Methods Phys Res B 199:554

    Article  CAS  Google Scholar 

  29. Tamborini G, Betti M, Forcina V, Hiernaut T, Giovannone B, Koch L (1998) Spectrochim Acta Part B 53:1289

    Article  Google Scholar 

  30. Defense Nuclear Agency (1981) The radiological cleanup of Enewetak Atoll. Washington DC, 700 pp

  31. Robison WL, Noshkin VE, Hamilton TF, Conrado CL, Bogen KT (2001) Report UCRL-LR-143980. Lawrence Livermore National Laboratory, 21 pp

  32. Eriksson M (2002) On weapons plutonium in the arctic environment (Thule, Greenland). Ph.D. Thesis, Risø-R-1321, Risø National Laboratory, Roskilde, Denmark, 146 pp

  33. Shevchenko SV (2004) Appl Radiat Isot 61:1303

    Article  CAS  Google Scholar 

  34. Bielewski M, Eriksson M, Himbert J, Simon R, Betti M, Hamilton TF (2007) Annual report of the synchrotron facility ANKA at the Forschungszentrum Karlsruhe, Germany, 2 pp

Download references

Acknowledgements

The Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry F. Hamilton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, T.F., Jernströem, J., Martinelli, R.E. et al. Frequency distribution, isotopic composition and physical characterization of plutonium-bearing particles from the Fig-Quince zone on Runit Island, Enewetak Atoll. J Radioanal Nucl Chem 282, 1019–1026 (2009). https://doi.org/10.1007/s10967-009-0237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-009-0237-x

Keywords

Navigation