Verification of a Fissile Material Cutoff Treaty: The case of enrichment facilities and the role of ultra-trace level isotope ratio analysis



One challenge to a potential verification regime for a Fissile Material Cutoff Treaty (FMCT) would be to assure that enrichment plants are not producing highly enriched uranium (HEU) for weapons purposes. Namely in some older enrichment plants, operated in nuclear weapon states, environmental sampling techniques might detect particles from historic HEU production. Determination of the age of these particles would be the most direct confirmation of treaty-compliance. While methods are available to determine the age of nuclear materials based on the concentrations of decay products, micron-sized uranium particles are particularly difficult to analyze. We will review the sensitivity requirements for age determination of HEU particles in an FMCT, and assess the potential of advanced measurement techniques available for this application.


Uranium Inductively Couple Plasma Mass Spectrometry Thermal Ionization Mass Spectrometry Accelerator Mass Spectrometry Accelerator Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    UN General Assembly Resolution 48/75L, 1993, Scholar
  2. 2.
    Global Fissile Material Report 2008: Scope and Verification of a Fissile Material (Cutoff) Treaty, International Panel on Fissile Materials, Princeton, NJ, October 2008, Scholar
  3. 3.
    Banning the Production of Fissile Materials for Nuclear Weapons: Country Perspectives on the Challenges to a Fissile Material (Cutoff) Treaty, Companion Volume to Global Fissile Material Report 2008, see Ref. 2, Princeton, NJ, October 2008, Scholar
  4. 4.
    R. Kips, A. Leenaers, G. Tamborini, M. Betti, S. Van den Berghe, R. Wellum, P. Taylor, Microsc. Microanal., 13 (2007) 156.CrossRefGoogle Scholar
  5. 5.
    W. Bush, G. af Ekenstam, J. Janov, E. Kuhn, M. Ryjinski, IAEA Experience with Environmental Sampling at Gas Centrifuge Enrichment Plants in the European Union, IAEA-SM-367/10/04, Proc. Symp. on International Safeguards, Verification and Nuclear Material Security, 29 October–2 November 2001, Vienna, Austria.Google Scholar
  6. 6.
    J. Cooley, K. Murakami, C. Charlier, E. Kuhn, M. Ryjinski, W. Bush, Experience with Environmental Swipe Sampling in a Newly Built Gas Centrifuge Plant, Proc. of the 40th Annual Meeting of the Institute of Nuclear Materials Management, July 25–29, Phoenix, Arizona, 1999.Google Scholar
  7. 7.
    W. Bush et al., see Ref. 5.Google Scholar
  8. 8.
    M. Wallenius, A. Morgenstern, C. Apostolidis, K. Mayer, Anal. Bioanal. Chem., 374 (2002) 379.CrossRefGoogle Scholar
  9. 9.
    A. Morgenstern, C. Apostolidis, K. Mayer, Anal. Chem., 74 (2002) 5513.CrossRefGoogle Scholar
  10. 10.
    A. O. Nier, Phys. Rev., 55 (1939) 153.CrossRefGoogle Scholar
  11. 11.
    O. Hahn, F. Straßmann, E. Walling, Naturwissenschaften, 12 (1937) 189.CrossRefGoogle Scholar
  12. 12.
    M. WALLENIUS, A. MORGENSTERN, A. NICHOLL, R. FIEDLER, C. APOSTOLIDIS, K. MAYER, Age Determination of Highly Enriched Uranium, IAEA-SM-367/5/07.Google Scholar
  13. 13.
    S. BÜRGER, L. R. RICIPUTI, D. A. BOSTICK, S. TURGEON, E. H. MCBAY, M. LAVELLE, Isotope Ratio Analysis of Actinides, Fission Products, and Geolocators by High-Efficiency Multi-Collector Thermal Ionization Mass Spectrometry, to be published.Google Scholar
  14. 14.
    C. Grüning, G. Huber, P. Klopp, J. V. Kratz, P. Kunz, G. Passler, N. Trautmann, A. Waldek, K. Wendt, Intern. J. Mass Spectrom., 235 (2004) 171.CrossRefGoogle Scholar
  15. 15.
    S. Bürger, R. A. Buda, H. Geckeis, G. Huber, J. V. Kratz, P. Kunz, C. Lierse von Gostomski, G. Passler, A. Remmert, N. Trautmann, J. Environ. Radioact., Radioactivity in the Environment, ISSN: 1569-4860/DOI 10.1016/S1569-4860(05)08046-0, p. 581.Google Scholar
  16. 16.
    J. B. Truscott, P. Jones, B. E. Fairman, E. H. Evans, Anal. Chim. Acta, 433 (2001) 245.CrossRefGoogle Scholar
  17. 17.
    D. Schaumlöffel, P. Giusti, M. V. Zoriy, C. Pickhardt, J. Szpunar, R. Łobiński, J. S. Becker, J. Anal. At. Spectrom., 20 (2005) 17.CrossRefGoogle Scholar
  18. 18.
    D. Hoffmann, Intern. J. Mass Spectrom., 275 (2008) 75.CrossRefGoogle Scholar
  19. 19.
    S. Bürger, L. R. Riciputi, S. Turgeon, D. Bostick, E. Mcbay, M. Lavelle, J. Alloys Comp., 444–445 (2007) 660.CrossRefGoogle Scholar
  20. 20.
    S. Bürger et al., Isotope Ratio Analysis, see Ref. 13.Google Scholar
  21. 21.
    D. Mccurdy, Z. Lin, K. G. W. Inn, R. Bell III, S. WAGNER, D. W. EFURD, R. STEINER, C. DUFFY, T. F. HAMILTON, T. A. BROWN, A. A. MARCHETTI, J. Radioanal. Nucl. Chem., 263 (2005) 447.Google Scholar
  22. 22.
    D. J. Rokop, D. W. Efurd, T. M. Benjamin, J. H. Cappis, J. W. Chamberlin, H. Poths, F. R. Roensch, J. Royal Soc. Western Australia, 79 (1996) 85.Google Scholar
  23. 23.
    T. M. Beasley, J. M. Kelley, T. C. Maiti, L. A. Bond, J. Environ. Radioact., 38 (1998) 133.CrossRefGoogle Scholar
  24. 24.
    X.-L. Zhao, L. R. Kilius, A. E. Litherland, T. Beasley, Nucl. Instr. Meth. Phys. Res., B126 (1997) 297.CrossRefGoogle Scholar
  25. 25.
    L. K. Fifield, R. G. Cresswell, M. L. di Tada, T. R. Ophel, J. P. Day, A. P. Clacher, S. J. King, N. D. Priest, Nucl Instr. Meth. Phys. Res., B117 (1996) 295.CrossRefGoogle Scholar
  26. 26.
    J. E. Mcaninch, T. F. Hamilton, T. A. Brown, T. A. Jokela, J. P. Knezovich, T. J. Ognibene, I. D. Proctor, M. L. Roberts, E. Sideras-Haddad, J. R. Southon, J. S. Vogel, Nucl. Instr. Meth. Phys. Res., B172 (2000) 711.CrossRefGoogle Scholar
  27. 27.
    L. K. Fifield, H.-A. Synal, M. Suter, Nucl. Instr. Meth. Phys. Res., B223–224 (2004) 802.CrossRefGoogle Scholar
  28. 28.
    McCurdy, see Ref. 21.Google Scholar
  29. 29.
    “Signatures of Plutonium and Uranium,” Appendix F in Nuclear Forensics: Role, State of the Art, Program Needs, Report by the Joint Working Group of the American Physical Society (APS) Panel on Public Affairs and the American Association for the Advancement of Science (AAAS), Center for Science, Technology and Security Policy, Washington, D.C., February 2008, Table F.3.Google Scholar
  30. 30.
    H. G. Wood, A. Glaser, Computational Analysis of Signatures of Highly Enriched Uranium Produced by Centrifuge and Gaseous Diffusion, in: Proc. INMM 49 th Annual Meeting, Nashville, TN, July 13–17, 2008.Google Scholar
  31. 31.
    D. Donohue, personal communication.Google Scholar
  32. 32.
    Hoffmann, see Ref. 18.CrossRefGoogle Scholar
  33. 33.
    N. Praphairaksit, R. S. Houk, Anal. Chem., 72 (2000) 4435.CrossRefGoogle Scholar
  34. 34.
    P. K. Appelblad, I. Rodushkin, D. C. Baxter, J. Anal. At. Spectrom., 15 (2000) 359.CrossRefGoogle Scholar
  35. 35.
    M. Liezers, S. A. Lehn, K. B. Olsen, O. T. Farmer, D. C. Duckworth, “Plutonium Isotope Ratio Measurements at Femtogram-Attogram Levels by Single and Multicollector ICPMS Using Inline Selective Electrochemical Preconcentration and Stripping,” Abstract, Federation of Analytical Chemistry and Spectroscopy Societies, Reno, Nevada, 2008.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Program on Science and Global SecurityPrinceton UniversityPrincetonUSA
  2. 2.DOE New Brunswick LaboratoryArgonneUSA

Personalised recommendations